Electrochemical detection of dopamine via pencil graphite electrodes modified by Cu/CuxO nanoparticles

被引:57
作者
Bahrami, Elham [1 ]
Amini, Rasool [1 ]
Vardak, Shirin [2 ]
机构
[1] Shiraz Univ Technol, Dept Mat Sci & Engn, Shiraz 3619995161, Iran
[2] Isfahan Univ Technol, Dept Mat Engn, Esfahan 8415683111, Iran
关键词
Dopamine (DA); Detection; Pencil graphite electrode (PGE); Copper nanoparticles (CuNPs); Electrodeposition; Copper oxide; GLASSY-CARBON ELECTRODE; ASCORBIC-ACID; URIC-ACID; SELECTIVE DETECTION; CUO NANOPARTICLES; SENSOR; FILM; GRAPHENE;
D O I
10.1016/j.jallcom.2020.157292
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A novel voltammetric biosensor was developed through the modification of pencil graphite electrodes (PGEs) with Cu/CuxO nanoparticles. Initially, Cu nanoparticles (CuNPs) were electrodeposited on the PGEs surface at various deposition potentials and times. Then, by applying 20 voltammetric cycles in a 0.1 M sodium hydroxide solution, the CuNPs were converted into copper oxide. The dopamine (DA) detection ability of modified electrodes in 0.1 M PBS (pH = 5.8) was consequently evaluated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The highest peak current (I-p) for DA electrooxidation was observed by the electrode modified at -0.6 V vs. Ag/AgCl and 150 s. This optimized electrode also exhibited a low limit of detection (LOD) of 1.06 mu M, and a high sensitivity of 0.51 mu A/mu M being higher than that of the biosensors modified by rod-shaped CuO, ZnO, TiO2 and AuNPs. The optimal biosensor showed a high selectivity (E-UA - E-DA = 0.14 V) for DA at pH 5.8, while it was unable to detect Ascorbic acid (AA). In order to obtain more details, phase and morphology identification of the deposited NPs were studied by X-ray diffraction and field emission scanning electron microscopy, respectively. In addition, the effect of scan rate and pH of test solution on DA detection ability of optimal biosensor was evaluated and optimum values were determined. It was also found that the electron transfer process for DA at the modified electrode surface is reversible. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:10
相关论文
共 43 条
[1]   Wide Linear-Range Detecting Nonenzymatic Glucose Biosensor Based on CuO Nanoparticles Inkjet-Printed on Electrodes [J].
Ahmad, Rafiq ;
Vaseem, Mohammad ;
Tripathy, Nirmalya ;
Hahn, Yoon-Bong .
ANALYTICAL CHEMISTRY, 2013, 85 (21) :10448-10454
[2]  
ARDAKANI MM, 2009, J SOLID STATE ELECTR, V13, P1433, DOI DOI 10.1007/S10008-008-0692-2
[3]   Electrodeposition of CuO from Cu-MOF on glassy carbon electrode: A non enzymatic sensor for glucose [J].
Arul, P. ;
John, S. Abraham .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2017, 799 :61-69
[4]   An amperometric sensitive dopamine biosensor based on novel copper oxide nanostructures [J].
Baloach, Qurrat-ul-ain ;
Nafady, Ayman ;
Tahira, Aneela ;
Sirajuddin ;
Sherazi, Syed Tufail Hussain ;
Shaikh, Tayyaba ;
Arain, Munazza ;
Willander, Magnus ;
Ibupoto, Zafar Hussain .
MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2017, 23 (05) :1229-1235
[5]  
Bard A. J., 1980, ELECTROCHEMICAL METH
[6]   Polyeugenol-modified platinum electrode for selective detection of dopamine in the presence of ascorbic acid [J].
Ciszewski, A ;
Milczarek, G .
ANALYTICAL CHEMISTRY, 1999, 71 (05) :1055-1061
[7]  
Fooladsaz K, 2012, INT J ELECTROCHEM SC, V7, P9892
[8]   DETERMINATION OF DIFFUSION-COEFFICIENTS BY FLOW-INJECTION ANALYSIS [J].
GERHARDT, G ;
ADAMS, RN .
ANALYTICAL CHEMISTRY, 1982, 54 (14) :2618-2620
[9]   ZnO-CuxO/polypyrrole nanocomposite modified electrode for simultaneous determination of ascorbic acid, dopamine, and uric acid [J].
Ghanbari, Kh ;
Hajheidari, N. .
ANALYTICAL BIOCHEMISTRY, 2015, 473 :53-62
[10]   An electrochemical sensor for dopamine detection using poly-tryptophan composited graphene on glassy carbon as the electrode [J].
Gong Qiao-juan ;
Han Hai-xia ;
Wang Yong-dong ;
Yao Chen-zhong ;
Yang Hai-ying ;
Qiao Jin-li .
NEW CARBON MATERIALS, 2020, 35 (01) :34-41