Promotion of activation ability of N vacancies to N2 molecules on sulfur-doped graphitic carbon nitride with outstanding photocatalytic nitrogen fixation ability

被引:46
作者
Li, Zheng [1 ]
Gu, Guizhou [1 ]
Hu, Shaozheng [1 ]
Zou, Xiong [3 ]
Wu, Guang [2 ]
机构
[1] Liaoning Shihua Univ, Coll Chem Chem Engn & Environm Engn, Fushun 113001, Liaoning, Peoples R China
[2] Heilongjiang Univ, Res Inst Crop Sci, Sch Chem Chem Engn & Mat, Harbin 150080, Heilongjiang, Peoples R China
[3] Dalian Univ Technol, Sch Chem Engn, Dalian 116012, Liaoning, Peoples R China
基金
中国国家自然科学基金;
关键词
Graphitic carbon nitride; Nitrogen photofixation; Co-doping; Photocatalysis; Plasma treatment; LARGE-SCALE PRODUCTION; HYDROGEN EVOLUTION; PHOTOFIXATION ABILITY; ELECTRONIC-STRUCTURE; FACILE SYNTHESIS; G-C3N4; PERFORMANCE; WATER; POLYMERIZATION; NANOSHEETS;
D O I
10.1016/S1872-2067(19)63364-4
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Nitrogen vacancies and sulfur co-doped g-C3N4 with outstanding N-2 photofixation ability was synthesized via dielectric barrier discharge plasma treatment. X-ray diffraction, ultraviolet-visible spectroscopy, N-2 adsorption, scanning electron microscopy, X-ray photoelectron spectroscopy, photoluminescence spectroscopy, and temperature-programmed desorption were used to characterize the as-prepared catalyst. The results showed that plasma treatment cannot change the morphology of the as-prepared catalyst but introduces nitrogen vacancies and sulfur into g-C3N4 lattice simultaneously. The as-prepared co-doped g-C3N4 displays an ammonium ion production rate as high as 6.2 mg.L-1.h(-1).g(ca)(t)(-1), , which is 2.3 and 25.8 times higher than that of individual N-vacancy-doped g-C3N4 and neat g-C3N4, respectively, as well as showing good catalytic stability. Experimental and density functional theory calculation results indicate that, compared with individual N vacancy doping, the introduction of sulfur can promote the activation ability of N vacancies to N-2 molecules, leading to promoted N-2 photofixation performance. (C) 2019, Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:1178 / 1186
页数:9
相关论文
共 39 条
[1]   Mesoporous carbon nitride as a metal-free base catalyst in the microwave assisted Knoevenagel condensation of ethylcyanoacetate with aromatic aldehydes [J].
Ansari, Mohd Bismillah ;
Jin, Hailian ;
Parvin, Mst Nargis ;
Park, Sang-Eon .
CATALYSIS TODAY, 2012, 185 (01) :211-216
[2]   Nitrogen photofixation by ultrathin amine-functionalized graphitic carbon nitride nanosheets as a gaseous product from thermal polymerization of urea [J].
Cao, Shihai ;
Chen, Huan ;
Jiang, Fang ;
Wang, Xin .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2018, 224 :222-229
[3]   Electronic structure of heterojunction MoO2/g-C3N4 catalyst for oxidative desulfurization [J].
Chen, Kun ;
Zhang, Xiao-Min ;
Yang, Xian-Feng ;
Jiao, Meng-Gai ;
Zhou, Zhen ;
Zhang, Ming-Hui ;
Wang, Dan-Hong ;
Bu, Xian-He .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2018, 238 :263-273
[4]   Nitrogen vacancy engineered graphitic C3N4-based polymers for photocatalytic oxidation of aromatic alcohols to aldehydes [J].
Ding, Jing ;
Xu, Wei ;
Wan, Hui ;
Yuan, Dashui ;
Chen, Chong ;
Wang, Lei ;
Guan, Guofeng ;
Dai, Wei-Lin .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2018, 221 :626-634
[5]   An Advanced Semimetal-Organic Bi Spheres-g-C3N4 Nanohybrid with SPR-Enhanced Visible-Light Photocatalytic Performance for NO Purification [J].
Dong, Fan ;
Zhao, Zaiwang ;
Sun, Yanjuan ;
Zhang, Yuxin ;
Yan, Shuai ;
Wu, Zhongbiao .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2015, 49 (20) :12432-12440
[6]   Selective photocatalytic N2 fixation dependent on g-C3N4 induced by nitrogen vacancies [J].
Dong, Guohui ;
Ho, Wingkei ;
Wang, Chuanyi .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (46) :23435-23441
[7]  
Fujishima A., 2000, J PHOTOCH PHOTOBIO C, V1, P1, DOI [DOI 10.1016/S1389-5567(00)00002-2, 10.1016/S1389-5567(00)00002-2]
[8]   Phosphorus-Doped Carbon Nitride Tubes with a Layered Micro-nanostructure for Enhanced Visible-Light Photocatalytic Hydrogen Evolution [J].
Guo, Shien ;
Deng, Zhaopeng ;
Li, Mingxia ;
Jiang, Baojiang ;
Tian, Chungui ;
Pan, Qingjiang ;
Fu, Honggang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (05) :1830-1834
[9]   ENVIRONMENTAL APPLICATIONS OF SEMICONDUCTOR PHOTOCATALYSIS [J].
HOFFMANN, MR ;
MARTIN, ST ;
CHOI, WY ;
BAHNEMANN, DW .
CHEMICAL REVIEWS, 1995, 95 (01) :69-96
[10]   Mesoporous carbon nitride with in situ sulfur doping for enhanced photocatalytic hydrogen evolution from water under visible light [J].
Hong, Jindui ;
Xia, Xiaoyang ;
Wang, Yongsheng ;
Xu, Rong .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (30) :15006-15012