Electronic structures of zigzag graphene nanoribbons with edge hydrogenation and oxidation

被引:246
作者
Lee, Geunsik [1 ]
Cho, Kyeongjae
机构
[1] Univ Texas Dallas, Dept Mat Sci & Engn, Richardson, TX 75080 USA
来源
PHYSICAL REVIEW B | 2009年 / 79卷 / 16期
关键词
ab initio calculations; band structure; density functional theory; electronegativity; elemental semiconductors; graphene; hydrogenation; nanostructured materials; organic compounds; oxidation; AUGMENTED-WAVE METHOD; SEMICONDUCTORS; RIBBONS; STATE; GAS;
D O I
10.1103/PhysRevB.79.165440
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Using the ab initio density-functional theory method and local spin-density approximation, we calculated the electronic band structures of H or H2 edge-hydrogenated zigzag graphene nanoribbons (ZGNRs) as well as COH, CO, or C2O edge-oxidized ZGNRs. We found that the OH group yields almost the same band structure as the sp(2) hybridization of H edge, and that the ketone (CO) and ether (C2O) groups result in band structures similar to those of sp(3) hybridization of H2 edge. Compared to H passivation, edge oxidation by the ketone or the ether group is energetically more favorable, suggesting that the GNR's edges will be oxidized in the presence of oxidizing species. Edge oxidized GNRs show metallic band structures caused by the larger electronegativity of oxygen relative to carbon, and these findings raise a question about the physical origins of the experimental observations of semiconducting GNRs. Such discrepancy suggests that more realistic modeling of GNR edge structures will be necessary to understand the experimental findings.
引用
收藏
页数:12
相关论文
共 36 条
  • [1] MODEL FOR ELECTRONIC-STRUCTURE OF AMORPHOUS-SEMICONDUCTORS
    ANDERSON, PW
    [J]. PHYSICAL REVIEW LETTERS, 1975, 34 (15) : 953 - 955
  • [2] Ballistic transport in graphene nanostrips in the presence of disorder: Importance of edge effects
    Areshkin, Denis A.
    Gunlycke, Daniel
    White, Carter T.
    [J]. NANO LETTERS, 2007, 7 (01) : 204 - 210
  • [3] Electronic structure and stability of semiconducting graphene nanoribbons
    Barone, Veronica
    Hod, Oded
    Scuseria, Gustavo E.
    [J]. NANO LETTERS, 2006, 6 (12) : 2748 - 2754
  • [4] Electronic confinement and coherence in patterned epitaxial graphene
    Berger, Claire
    Song, Zhimin
    Li, Xuebin
    Wu, Xiaosong
    Brown, Nate
    Naud, Cecile
    Mayou, Didier
    Li, Tianbo
    Hass, Joanna
    Marchenkov, Atexei N.
    Conrad, Edward H.
    First, Phillip N.
    de Heer, Wait A.
    [J]. SCIENCE, 2006, 312 (5777) : 1191 - 1196
  • [5] PROJECTOR AUGMENTED-WAVE METHOD
    BLOCHL, PE
    [J]. PHYSICAL REVIEW B, 1994, 50 (24): : 17953 - 17979
  • [6] GROUND-STATE OF THE ELECTRON-GAS BY A STOCHASTIC METHOD
    CEPERLEY, DM
    ALDER, BJ
    [J]. PHYSICAL REVIEW LETTERS, 1980, 45 (07) : 566 - 569
  • [7] Edge-functionalized and substitutionally doped graphene nanoribbons:: Electronic and spin properties
    Cervantes-Sodi, F.
    Csanyi, G.
    Piscanec, S.
    Ferrari, A. C.
    [J]. PHYSICAL REVIEW B, 2008, 77 (16)
  • [8] Graphene nano-ribbon electronics
    Chen, Zhihong
    Lin, Yu-Ming
    Rooks, Michael J.
    Avouris, Phaedon
    [J]. PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2007, 40 (02) : 228 - 232
  • [9] *EPAPS, EPRBMDO79078916 EPAP
  • [10] The rise of graphene
    Geim, A. K.
    Novoselov, K. S.
    [J]. NATURE MATERIALS, 2007, 6 (03) : 183 - 191