Porous Graphene Oxide/Diboronic Acid Materials: Structure and Hydrogen Sorption

被引:47
作者
Mercier, Guillaume [1 ]
Klechikov, Alexey [1 ]
Hedenstrom, Mattias [2 ]
Johnels, Dan [2 ]
Baburin, Igor A. [3 ]
Seifert, Gotthard [3 ]
Mysyk, Roman [4 ]
Talyzin, Alexandr V. [1 ]
机构
[1] Umea Univ, Dept Phys, SE-90187 Umea, Sweden
[2] Umea Univ, Dept Chem, SE-90187 Umea, Sweden
[3] Tech Univ Dresden, Theoret Chem, D-01062 Dresden, Germany
[4] CIC Energigune, Arabako Teknol Pk, Minano 01510, Spain
基金
瑞典研究理事会;
关键词
COVALENT ORGANIC FRAMEWORKS; HIGH-SURFACE-AREA; GRAPHITE OXIDE; ACTIVATED CARBON; CRITICAL-TEMPERATURE; LATTICE EXPANSION; STORAGE; ADSORPTION; NANOSTRUCTURES; MEMBRANES;
D O I
10.1021/acs.jpcc.5b06402
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Solvothermal reaction of graphite oxide (GO) with benzene-1,4-diboronic acid (DBA) was reported previously to result in formation of graphene oxide framework (GOP) materials. The theoretical structure of GOFs consists of graphene layers separated by benzene-diboronic "pillars" with similar to 1 nm slit pores thus providing the opportunity to use it as a model material to verify the effect of a small pore size on hydrogen adsorption. A set of samples with specific surface area (SSA) in the range of similar to 50-1000 m(2)/g were prepared using variations of synthesis conditions and GO/DBA proportions. Hydrogen storage properties of GOF samples evaluated at 293 and 77 K were found to be similar to other nanocarbon trends in relation to SSA values. Structural characterization of GO/DBA samples showed all typical features reported as evidence for formation of a framework structure such as expanded interlayer distance, increased temperature of thermal exfoliation, typical features in FTIR spectra, etc. However, the samples also exhibited reversible swelling in polar solvents which is not compatible with the idealized GOF structure linked by benzenediboronic molecular pillars. Therefore, possible alternative nonframework models of structures with pillars parallel and perpendicular to GO planes are considered.
引用
收藏
页码:27179 / 27191
页数:13
相关论文
共 55 条
[1]   DER VERPUFFUNGSPUNKT DES GRAPHITOXIDS [J].
BOEHM, HP ;
SCHOLZ, W .
ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE, 1965, 335 (1-2) :74-&
[2]  
Brodie B. C., 1859, PHILOS T R SOC LONDO, V149, P249, DOI [10.1098/rspl.1859.0007, DOI 10.1098/RSTL.1859.0013]
[3]   Graphene Oxide Framework Materials: Theoretical Predictions and Experimental Results [J].
Burress, Jacob W. ;
Gadipelli, Srinivas ;
Ford, Jamie ;
Simmons, Jason M. ;
Zhou, Wei ;
Yildirim, Taner .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2010, 49 (47) :8902-8904
[4]   The assessment of surface areas in porous carbons by two model-independent techniques, the DR equation and DFT [J].
Centeno, T. A. ;
Stoeckli, F. .
CARBON, 2010, 48 (09) :2478-2486
[5]   A route to high surface area, porosity and inclusion of large molecules in crystals [J].
Chae, HK ;
Siberio-Pérez, DY ;
Kim, J ;
Go, Y ;
Eddaoudi, M ;
Matzger, AJ ;
O'Keeffe, M ;
Yaghi, OM .
NATURE, 2004, 427 (6974) :523-527
[6]   Hydrogen storage inside graphene-oxide frameworks [J].
Chan, Yue ;
Hill, James M. .
NANOTECHNOLOGY, 2011, 22 (30)
[7]   SUPPRESSION OF SIGNALS FROM THE PROBE IN BLOCH DECAY SPECTRA [J].
CORY, DG ;
RITCHEY, WM .
JOURNAL OF MAGNETIC RESONANCE, 1988, 80 (01) :128-132
[8]   Porous, crystalline, covalent organic frameworks [J].
Côté, AP ;
Benin, AI ;
Ockwig, NW ;
O'Keeffe, M ;
Matzger, AJ ;
Yaghi, OM .
SCIENCE, 2005, 310 (5751) :1166-1170
[9]   Hydrogen storage in activated carbons and activated carbon fibers [J].
de la Casa-Lillo, MA ;
Lamari-Darkrim, F ;
Cazorla-Amorós, D ;
Linares-Solano, A .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (42) :10930-10934
[10]  
De Weireld G, 1999, MEAS SCI TECHNOL, V10, P117, DOI 10.1088/0957-0233/10/2/010