A solution to a slightly subcritical elliptic problem with non-power nonlinearity

被引:14
作者
Clapp, Monica [1 ]
Pardo, Rosa [2 ]
Pistoia, Angela [3 ]
Saldana, Alberto [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Matemat, Ciudad Univ, Ciudad De Mexico 04510, Mexico
[2] Univ Complutense Madrid, Fac Ciencias Quim, Dept Anal Matemat & Matemat Aplicada, Madrid 28040, Spain
[3] Sapienza Univ Roma, Dipartimento Metodi & Modelli Matemat, Via Antonio Scarpa 16, I-00161 Rome, Italy
关键词
Blow-up solutions; Critical Sobolev exponent; Ljapunov-Schmidt reduction; CRITICAL-POINTS; POSITIVE SOLUTIONS; CRITICAL EXPONENT; ROBIN FUNCTION; EXISTENCE;
D O I
10.1016/j.jde.2020.11.030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a slightly subcritical Dirichlet problem with a non-power nonlinearity in a bounded smooth domain. For this problem, standard compact embeddings cannot be used to guarantee the existence of solutions as in the case of power-type nonlinearities. Instead, we use a Ljapunov-Schmidt reduction method to show that there is a positive solution which concentrates at a non-degenerate critical point of the Robin function. This is the first existence result for this type of generalized slightly subcritical problems. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:418 / 446
页数:29
相关论文
共 20 条