Evidence for bandgap opening in buckled epitaxial graphene from ultrafast time-resolved terahertz spectroscopy

被引:6
作者
Mihnev, Momchil T. [1 ,2 ]
Wang, Feng [3 ]
Liu, Gang [4 ]
Rothwell, Sara [5 ]
Cohen, Philip I. [5 ]
Feldman, Leonard C. [4 ]
Conrad, Edward H. [3 ]
Norris, Theodore B. [1 ,2 ]
机构
[1] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Ctr Ultrafast Opt Sci, Ann Arbor, MI 48109 USA
[3] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA
[4] Rutgers State Univ, Inst Adv Mat Devices & Nanotechnol, Piscataway, NJ 08854 USA
[5] Univ Minnesota, Dept Elect & Comp Engn, Minneapolis, MN 55455 USA
基金
美国国家科学基金会;
关键词
PROBE SPECTROSCOPY; TRANSISTORS; DYNAMICS; CONFINEMENT; RELAXATION;
D O I
10.1063/1.4934781
中图分类号
O59 [应用物理学];
学科分类号
摘要
We utilize ultrafast time-resolved terahertz (THz) spectroscopy as a direct, sensitive, and non-contact all-optical probe to investigate the hot-carrier relaxation and cooling dynamics of buckled epitaxial graphene. This special form of graphene is grown epitaxially on nitrogen-seeded single-crystal silicon carbide (SiC(000 (1) over bar)) substrates by thermal decomposition of Si atoms. The pre-deposited interfacial nitrogen atoms pin the first graphene layer to the SiC substrate, and cause it and subsequent graphene layers to buckle into nanoscale folds, which opens an energy gap of up to similar to 0.7 eV. We observe a remarkable increase of up to two orders of magnitude in the relaxation rate of the THz carrier dynamics of this semiconducting form of epitaxial graphene relative to pristine epitaxial graphene, which we attribute to a large enhancement of the optical-phonon-mediated carrier cooling and recombination over a wide range of electron temperatures due to the finite bandgap. Our results suggest that the introduced bandgap is spatially non-homogenous, with local values close to the optical phonon energy of similar to 200 meV, which allows the conduction and the valence band to be bridged by optical phonon emission. We also demonstrate that carrier relaxation times can be modified by orders of magnitude by careful bandgap engineering, which could find application in novel graphene-based devices that incorporate both metallic and semiconducting forms of graphene. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:5
相关论文
共 29 条
[1]   Terahertz Spectroscopy [J].
Baxter, Jason B. ;
Guglietta, Glenn W. .
ANALYTICAL CHEMISTRY, 2011, 83 (12) :4342-4368
[2]   Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics [J].
Berger, C ;
Song, ZM ;
Li, TB ;
Li, XB ;
Ogbazghi, AY ;
Feng, R ;
Dai, ZT ;
Marchenkov, AN ;
Conrad, EH ;
First, PN ;
de Heer, WA .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (52) :19912-19916
[3]   Electronic confinement and coherence in patterned epitaxial graphene [J].
Berger, Claire ;
Song, Zhimin ;
Li, Xuebin ;
Wu, Xiaosong ;
Brown, Nate ;
Naud, Cecile ;
Mayou, Didier ;
Li, Tianbo ;
Hass, Joanna ;
Marchenkov, Atexei N. ;
Conrad, Edward H. ;
First, Phillip N. ;
de Heer, Wait A. .
SCIENCE, 2006, 312 (5777) :1191-1196
[4]   Ultrafast nonequilibrium carrier dynamics in a single graphene layer [J].
Breusing, M. ;
Kuehn, S. ;
Winzer, T. ;
Malic, E. ;
Milde, F. ;
Severin, N. ;
Rabe, J. P. ;
Ropers, C. ;
Knorr, A. ;
Elsaesser, T. .
PHYSICAL REVIEW B, 2011, 83 (15)
[5]   Ultrafast collinear scattering and carrier multiplication in graphene [J].
Brida, D. ;
Tomadin, A. ;
Manzoni, C. ;
Kim, Y. J. ;
Lombardo, A. ;
Milana, S. ;
Nair, R. R. ;
Novoselov, K. S. ;
Ferrari, A. C. ;
Cerullo, G. ;
Polini, M. .
NATURE COMMUNICATIONS, 2013, 4
[6]   Large area and structured epitaxial graphene produced by confinement controlled sublimation of silicon carbide [J].
de Heer, Walt A. ;
Berger, Claire ;
Ruan, Ming ;
Sprinkle, Mike ;
Li, Xuebin ;
Hu, Yike ;
Zhang, Baiqian ;
Hankinson, John ;
Conrad, Edward .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (41) :16900-16905
[7]   Semiconducting-to-Metallic Photoconductivity Crossover and Temperature-Dependent Drude Weight in Graphene [J].
Frenzel, A. J. ;
Lui, C. H. ;
Shin, Y. C. ;
Kong, J. ;
Gedik, N. .
PHYSICAL REVIEW LETTERS, 2014, 113 (05)
[8]   Observation of suppressed terahertz absorption in photoexcited graphene [J].
Frenzel, A. J. ;
Lui, C. H. ;
Fang, W. ;
Nair, N. L. ;
Herring, P. K. ;
Jarillo-Herrero, P. ;
Kong, J. ;
Gedik, N. .
APPLIED PHYSICS LETTERS, 2013, 102 (11)
[9]   Ultrafast Optical-Pump Terahertz-Probe Spectroscopy of the Carrier Relaxation and Recombination Dynamics in Epitaxial Graphene [J].
George, Paul A. ;
Strait, Jared ;
Dawlaty, Jahan ;
Shivaraman, Shriram ;
Chandrashekhar, Mvs ;
Rana, Farhan ;
Spencer, Michael G. .
NANO LETTERS, 2008, 8 (12) :4248-4251
[10]  
Gierz I, 2013, NAT MATER, V12, P1119, DOI [10.1038/NMAT3757, 10.1038/nmat3757]