Spline Collocation for Fractional Integro-Differential Equations

被引:4
|
作者
Pedas, Arvet [1 ]
Tamme, Enn [1 ]
Vikerpuur, Mikk [1 ]
机构
[1] Univ Tartu, Inst Math, EE-50409 Tartu, Estonia
关键词
BOUNDARY-VALUE-PROBLEMS; PIECEWISE POLYNOMIAL COLLOCATION; DIFFERENTIAL-EQUATIONS; NUMERICAL-METHODS; ORDER;
D O I
10.1007/978-3-319-20239-6_34
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We consider a class of boundary value problems for fractional integro-differential equations. Using an integral equation reformulation of the boundary value problem, we first study the regularity of the exact solution. Based on the obtained regularity properties and spline collocation techniques, the numerical solution of the boundary value problem by suitable non-polynomial approximations is discussed. Optimal global convergence estimates are derived and a super-convergence result for a special choice of grid and collocation parameters is given. A numerical illustration is also presented.
引用
收藏
页码:315 / 322
页数:8
相关论文
共 50 条
  • [31] A new B-spline collocation method for singular integro-differential equations of higher orders
    Zemlyanova, Anna Y.
    Machina, Alexia
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 380 (380)
  • [32] Tension spline collocation methods for singularly perturbed Volterra integro-differential and Volterra integral equations
    Horvat, V
    Rogina, M
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 140 (1-2) : 381 - 402
  • [33] B-Spline collocation method for linear and nonlinear Fredholm and Volterra integro-differential equations
    Mahmoodi, Z.
    Rashidinia, J.
    Babolian, E.
    APPLICABLE ANALYSIS, 2013, 92 (09) : 1787 - 1802
  • [34] Convergence and superconvergence of a fractional collocation method for weakly singular Volterra integro-differential equations
    Zheng Ma
    Martin Stynes
    Chengming Huang
    BIT Numerical Mathematics, 2024, 64
  • [35] Theoretical and computational analysis of nonlinear fractional integro-differential equations via collocation method
    Amin, Rohul
    Ahmad, Hijaz
    Shah, Kamal
    Hafeez, M. Bilal
    Sumelka, W.
    CHAOS SOLITONS & FRACTALS, 2021, 151
  • [36] Convergence and superconvergence of a fractional collocation method for weakly singular Volterra integro-differential equations
    Ma, Zheng
    Stynes, Martin
    Huang, Chengming
    BIT NUMERICAL MATHEMATICS, 2024, 64 (01)
  • [37] CONVERGENCE ANALYSIS OF THE JACOBI SPECTRAL-COLLOCATION METHOD FOR FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS
    杨银
    陈艳萍
    黄云清
    Acta Mathematica Scientia, 2014, 34 (03) : 673 - 690
  • [38] Shifted Jacobi-Gauss-collocation with convergence analysis for fractional integro-differential equations
    Doha, E. H.
    Abdelkawy, M. A.
    Amin, A. Z. M.
    Lopes, Antonio M.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 72 : 342 - 359
  • [39] CONVERGENCE ANALYSIS OF THE JACOBI SPECTRAL-COLLOCATION METHOD FOR FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS
    Yang, Yin
    Chen, Yanping
    Huang, Yunqing
    ACTA MATHEMATICA SCIENTIA, 2014, 34 (03) : 673 - 690
  • [40] Bernoulli Polynomials Collocation for Weakly Singular Volterra Integro-Differential Equations of Fractional Order
    Azodi, Haman Deilami
    Yaghouti, Mohammad Reza
    FILOMAT, 2018, 32 (10) : 3623 - 3635