Spline Collocation for Fractional Integro-Differential Equations

被引:4
|
作者
Pedas, Arvet [1 ]
Tamme, Enn [1 ]
Vikerpuur, Mikk [1 ]
机构
[1] Univ Tartu, Inst Math, EE-50409 Tartu, Estonia
关键词
BOUNDARY-VALUE-PROBLEMS; PIECEWISE POLYNOMIAL COLLOCATION; DIFFERENTIAL-EQUATIONS; NUMERICAL-METHODS; ORDER;
D O I
10.1007/978-3-319-20239-6_34
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We consider a class of boundary value problems for fractional integro-differential equations. Using an integral equation reformulation of the boundary value problem, we first study the regularity of the exact solution. Based on the obtained regularity properties and spline collocation techniques, the numerical solution of the boundary value problem by suitable non-polynomial approximations is discussed. Optimal global convergence estimates are derived and a super-convergence result for a special choice of grid and collocation parameters is given. A numerical illustration is also presented.
引用
收藏
页码:315 / 322
页数:8
相关论文
共 50 条
  • [11] COLLOCATION METHODS FOR INTEGRO-DIFFERENTIAL EQUATIONS
    HANGELBROEK, RJ
    KAPER, HG
    LEAF, GK
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1977, 14 (03) : 377 - 390
  • [12] Smoothing transformation and spline collocation for weakly singular Volterra integro-differential equations
    Diogo, T.
    Lima, P. M.
    Pedas, A.
    Vainikko, G.
    APPLIED NUMERICAL MATHEMATICS, 2017, 114 : 63 - 76
  • [13] Collocation methods for fractional integro-differential equations with weakly singular kernels
    Jingjun Zhao
    Jingyu Xiao
    Neville J. Ford
    Numerical Algorithms, 2014, 65 : 723 - 743
  • [14] Collocation methods for fractional integro-differential equations with weakly singular kernels
    Zhao, Jingjun
    Xiao, Jingyu
    Ford, Neville J.
    NUMERICAL ALGORITHMS, 2014, 65 (04) : 723 - 743
  • [15] On the Wavelet Collocation Method for Solving Fractional Fredholm Integro-Differential Equations
    Bin Jebreen, Haifa
    Dassios, Ioannis
    MATHEMATICS, 2022, 10 (08)
  • [16] Galerkin and Collocation Methods for Weakly Singular Fractional Integro-differential Equations
    Sharma, Shiva
    Pandey, Rajesh K.
    Kumar, Kamlesh
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2019, 43 (A4): : 1649 - 1656
  • [17] A Jacobi Spectral Collocation Method for Solving Fractional Integro-Differential Equations
    Qingqing Wu
    Zhongshu Wu
    Xiaoyan Zeng
    Communications on Applied Mathematics and Computation, 2021, 3 : 509 - 526
  • [18] A Jacobi Spectral Collocation Method for Solving Fractional Integro-Differential Equations
    Wu, Qingqing
    Wu, Zhongshu
    Zeng, Xiaoyan
    COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2021, 3 (03) : 509 - 526
  • [19] SPECTRAL-COLLOCATION METHOD FOR FRACTIONAL FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS
    Yang, Yin
    Chen, Yanping
    Huang, Yunqing
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2014, 51 (01) : 203 - 224
  • [20] Numerical solution of fractional integro-differential equations by a hybrid collocation method
    Ma, Xiaohua
    Huang, Chengming
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (12) : 6750 - 6760