Spline Collocation for Fractional Integro-Differential Equations

被引:4
|
作者
Pedas, Arvet [1 ]
Tamme, Enn [1 ]
Vikerpuur, Mikk [1 ]
机构
[1] Univ Tartu, Inst Math, EE-50409 Tartu, Estonia
来源
Finite Difference Methods, Theory and Applications | 2015年 / 9045卷
关键词
BOUNDARY-VALUE-PROBLEMS; PIECEWISE POLYNOMIAL COLLOCATION; DIFFERENTIAL-EQUATIONS; NUMERICAL-METHODS; ORDER;
D O I
10.1007/978-3-319-20239-6_34
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We consider a class of boundary value problems for fractional integro-differential equations. Using an integral equation reformulation of the boundary value problem, we first study the regularity of the exact solution. Based on the obtained regularity properties and spline collocation techniques, the numerical solution of the boundary value problem by suitable non-polynomial approximations is discussed. Optimal global convergence estimates are derived and a super-convergence result for a special choice of grid and collocation parameters is given. A numerical illustration is also presented.
引用
收藏
页码:315 / 322
页数:8
相关论文
共 50 条
  • [11] Modified spline collocation for linear fractional differential equations
    Kolk, Marek
    Pedas, Arvet
    Tamme, Enn
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 283 : 28 - 40
  • [12] BDF2 ADI orthogonal spline collocation method for the fractional integro-differential equations of parabolic type in three dimensions
    Wang, Ruru
    Yan, Yubin
    Hendy, A. S.
    Qiao, Leijie
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2024, 155 : 126 - 141
  • [13] Existence results for hybrid fractional integro-differential equations
    Sitho, Surang
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    BOUNDARY VALUE PROBLEMS, 2015, : 1 - 13
  • [14] CONVERGENCE ANALYSIS OF THE JACOBI SPECTRAL-COLLOCATION METHOD FOR FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS
    Yang, Yin
    Chen, Yanping
    Huang, Yunqing
    ACTA MATHEMATICA SCIENTIA, 2014, 34 (03) : 673 - 690
  • [15] Multistep collocation methods for Volterra integro-differential equations
    Cardone, Angelamaria
    Conte, Dajana
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 221 : 770 - 785
  • [16] Collocation methods for cordial Volterra integro-differential equations
    Song, Huiming
    Yang, Zhanwen
    Diogo, Teresa
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 393
  • [17] Collocation Method for Solving Two-Dimensional Fractional Volterra Integro-Differential Equations
    Kazemi, S.
    Tari, A.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2022, 46 (06): : 1629 - 1639
  • [18] Shifted Jacobi-Gauss-collocation with convergence analysis for fractional integro-differential equations
    Doha, E. H.
    Abdelkawy, M. A.
    Amin, A. Z. M.
    Lopes, Antonio M.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 72 : 342 - 359
  • [19] C3-spline for solution of second order fractional integro-differential equations
    Mohammadizadeh, S.
    Rashidinia, J.
    Ezzati, R.
    Khumalo, M.
    ALEXANDRIA ENGINEERING JOURNAL, 2020, 59 (05) : 3635 - 3641
  • [20] Explicit iteration to Hadamard fractional integro-differential equations on infinite domain
    Wang, Guotao
    Pei, Ke
    Baleanu, Dumitru
    Advances in Difference Equations, 2016,