Spline Collocation for Fractional Integro-Differential Equations

被引:4
作者
Pedas, Arvet [1 ]
Tamme, Enn [1 ]
Vikerpuur, Mikk [1 ]
机构
[1] Univ Tartu, Inst Math, EE-50409 Tartu, Estonia
来源
Finite Difference Methods, Theory and Applications | 2015年 / 9045卷
关键词
BOUNDARY-VALUE-PROBLEMS; PIECEWISE POLYNOMIAL COLLOCATION; DIFFERENTIAL-EQUATIONS; NUMERICAL-METHODS; ORDER;
D O I
10.1007/978-3-319-20239-6_34
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We consider a class of boundary value problems for fractional integro-differential equations. Using an integral equation reformulation of the boundary value problem, we first study the regularity of the exact solution. Based on the obtained regularity properties and spline collocation techniques, the numerical solution of the boundary value problem by suitable non-polynomial approximations is discussed. Optimal global convergence estimates are derived and a super-convergence result for a special choice of grid and collocation parameters is given. A numerical illustration is also presented.
引用
收藏
页码:315 / 322
页数:8
相关论文
共 13 条
[1]   A Survey on Existence Results for Boundary Value Problems of Nonlinear Fractional Differential Equations and Inclusions [J].
Agarwal, Ravi P. ;
Benchohra, Mouffak ;
Hamani, Samira .
ACTA APPLICANDAE MATHEMATICAE, 2010, 109 (03) :973-1033
[2]   Piecewise polynomial collocation methods for linear Volterra integro-differential equations with weakly singular kernels [J].
Brunner, H ;
Pedas, A ;
Vainikko, G .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2001, 39 (03) :957-982
[3]   Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type [J].
Diethelm, Kai .
ANALYSIS OF FRACTIONAL DIFFERENTIAL EQUATIONS: AN APPLICATION-ORIENTED EXPOSITION USING DIFFERENTIAL OPERATORS OF CAPUTO TYPE, 2010, 2004 :3-+
[4]   A Chebyshev spectral method based on operational matrix for initial and boundary value problems of fractional order [J].
Doha, E. H. ;
Bhrawy, A. H. ;
Ezz-Eldien, S. S. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (05) :2364-2373
[5]   High Order Numerical Methods for Fractional Terminal Value Problems [J].
Ford, Neville J. ;
Morgado, Maria L. ;
Rebelo, Magda .
COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2014, 14 (01) :55-70
[6]   FRACTIONAL BOUNDARY VALUE PROBLEMS: ANALYSIS AND NUMERICAL METHODS [J].
Ford, Neville J. ;
Luisa Morgado, M. .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2011, 14 (04) :554-567
[7]   Spectral collocation method for linear fractional integro-differential equations [J].
Ma, Xiaohua ;
Huang, Chengming .
APPLIED MATHEMATICAL MODELLING, 2014, 38 (04) :1434-1448
[8]   Numerical solution of nonlinear fractional differential equations by spline collocation methods [J].
Pedas, Arvet ;
Tamme, Enn .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 255 :216-230
[9]   Piecewise polynomial collocation for linear boundary value problems of fractional differential equations [J].
Pedas, Arvet ;
Tamme, Enn .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2012, 236 (13) :3349-3359
[10]   Spline collocation methods for linear multi-term fractional differential equations [J].
Pedas, Arvet ;
Tamme, Enn .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 236 (02) :167-176