Device modeling of perovskite solar cells based on structural similarity with thin film inorganic semiconductor solar cells

被引:278
作者
Minemoto, Takashi [1 ]
Murata, Masashi [1 ]
机构
[1] Ritsumeikan Univ, Dept Elect & Elect Engn, Kusatsu, Shiga 5258577, Japan
关键词
HOLE-TRANSPORT; EFFICIENT; ELECTRON; PERFORMANCE; LENGTHS;
D O I
10.1063/1.4891982
中图分类号
O59 [应用物理学];
学科分类号
摘要
Device modeling of CH3NH3PbI3-xCl3 perovskite-based solar cells was performed. The perovskite solar cells employ a similar structure with inorganic semiconductor solar cells, such as Cu(In, Ga) Se-2, and the exciton in the perovskite is Wannier-type. We, therefore, applied one-dimensional device simulator widely used in the Cu(In, Ga)Se-2 solar cells. A high open-circuit voltage of 1.0V reported experimentally was successfully reproduced in the simulation, and also other solar cell parameters well consistent with real devices were obtained. In addition, the effect of carrier diffusion length of the absorber and interface defect densities at front and back sides and the optimum thickness of the absorber were analyzed. The results revealed that the diffusion length experimentally reported is long enough for high efficiency, and the defect density at the front interface is critical for high efficiency. Also, the optimum absorber thickness well consistent with the thickness range of real devices was derived. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:6
相关论文
共 30 条
[1]   Models for numerical device simulations of crystalline silicon solar cells-a review [J].
Altermatt, Pietro P. .
JOURNAL OF COMPUTATIONAL ELECTRONICS, 2011, 10 (03) :314-330
[2]   Low-temperature processed meso-superstructured to thin-film perovskite solar cells [J].
Ball, James M. ;
Lee, Michael M. ;
Hey, Andrew ;
Snaith, Henry J. .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (06) :1739-1743
[3]   NUMERICAL MODELING OF TEXTURED SILICON SOLAR-CELLS USING PC-1D [J].
BASORE, PA .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 1990, 37 (02) :337-343
[4]   Modelling polycrystalline semiconductor solar cells [J].
Burgelman, M ;
Nollet, P ;
Degrave, S .
THIN SOLID FILMS, 2000, 361 :527-532
[5]   Sequential deposition as a route to high-performance perovskite-sensitized solar cells [J].
Burschka, Julian ;
Pellet, Norman ;
Moon, Soo-Jin ;
Humphry-Baker, Robin ;
Gao, Peng ;
Nazeeruddin, Mohammad K. ;
Graetzel, Michael .
NATURE, 2013, 499 (7458) :316-+
[6]  
Chirila A, 2011, NAT MATER, V10, P857, DOI [10.1038/NMAT3122, 10.1038/nmat3122]
[7]   Back surface band gap gradings in Cu(In,Ga)Se2 solar cells [J].
Dullweber, T ;
Lundberg, O ;
Malmström, J ;
Bodegård, M ;
Stolt, L ;
Rau, U ;
Schock, HW ;
Werner, JH .
THIN SOLID FILMS, 2001, 387 (1-2) :11-13
[8]   Elucidating the charge carrier separation and working mechanism of CH3NH3PbI3-xClx perovskite solar cells [J].
Edri, Eran ;
Kirmayer, Saar ;
Mukhopadhyay, Sabyasachi ;
Gartsman, Konstantin ;
Hodes, Gary ;
Cahen, David .
NATURE COMMUNICATIONS, 2014, 5
[9]   Morphological Control for High Performance, Solution-Processed Planar Heterojunction Perovskite Solar Cells [J].
Eperon, Giles E. ;
Burlakov, Victor M. ;
Docampo, Pablo ;
Goriely, Alain ;
Snaith, Henry J. .
ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (01) :151-157
[10]   MAGNETOABSORPTION OF THE LOWEST EXCITON IN PEROVSKITE-TYPE COMPOUND (CH3NH3)PBI3 [J].
HIRASAWA, M ;
ISHIHARA, T ;
GOTO, T ;
UCHIDA, K ;
MIURA, N .
PHYSICA B, 1994, 201 :427-430