Involvement of the Arabidopsis SWI2/SNF2 chromatin remodeling gene family in DNA damage response and recombination

被引:120
作者
Shaked, Hezi [1 ]
Avivi-Ragolsky, Naomi [1 ]
Levy, Avraham A. [1 ]
机构
[1] Weizmann Inst Sci, Dept Plant Sci, IL-76100 Rehovot, Israel
关键词
D O I
10.1534/genetics.105.051664
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
The genome of plants, like that of other eukaryotes, is organized into chromatin, a compact structure that reduces the accessibility of DNA to machineries such as transcription, replication, and DNA recombination and repair. Plant genes, which contain the characteristic ATPase/helicase motifs of the chromatin remodeling Swi2/Snf2 family of proteins, have been thoroughly studied, but their role in homologous recombination or DNA repair has received limited attention. We have searched for homologs of the yeast RAD54 gene, whose role in recombination and repair and in chromatin remodeling is well established. Forty Arabidopsis SWI2/SNF2 genes were identified and the function of a selected group of 14 was analyzed. Mutant analysis and/or RNAi-mediated silencing showed that 11 of the 14 genes tested played a role in response to DNA damage. Two of the 14 genes were involved in homologous recombination between inverted repeats. The putative ortholog of RAD54 and close homologs of ERCC6/ RAD26 were involved in DNA damage response, Suggesting functional conservation across kingdoms. In addition, genes known for their role in development, such as PICKLE/GYMNOS and PIE1, or in silencing, Such as DDM1, turned Out to also be involved in DNA damage response. A comparison of ddm1 and met1 Mutants suggests that DNA damage response is affected essentially by chromatin structure and that cytosine methylation is less critical. These results emphasize the broad involvement of the SWI2/SNF2 family, and thus of chromatin remodeling, in genome maintenance and the link between epigenetic and genetic processes.
引用
收藏
页码:985 / 994
页数:10
相关论文
共 64 条
[1]   Disruption of the plant gene MOM releases transcriptional silencing of methylated genes [J].
Amedeo, P ;
Habu, Y ;
Afsar, K ;
Scheid, OM ;
Paszkowski, J .
NATURE, 2000, 405 (6783) :203-206
[2]   Sister chromatid-based DNA repair is mediated by RAD54, not by DMC1 or TID1 [J].
Arbel, A ;
Zenvirth, D ;
Simchen, G .
EMBO JOURNAL, 1999, 18 (09) :2648-2658
[3]   Reduced X-ray resistance and homologous recombination frequencies in a RAD54(-/-) mutant of the chicken DT40 cell line [J].
Bezzubova, O ;
Silbergleit, A ;
YamaguchiIwai, Y ;
Takeda, S ;
Buerstedde, JM .
CELL, 1997, 89 (02) :185-193
[4]   Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays [J].
Brenner, S ;
Johnson, M ;
Bridgham, J ;
Golda, G ;
Lloyd, DH ;
Johnson, D ;
Luo, SJ ;
McCurdy, S ;
Foy, M ;
Ewan, M ;
Roth, R ;
George, D ;
Eletr, S ;
Albrecht, G ;
Vermaas, E ;
Williams, SR ;
Moon, K ;
Burcham, T ;
Pallas, M ;
DuBridge, RB ;
Kirchner, J ;
Fearon, K ;
Mao, J ;
Corcoran, K .
NATURE BIOTECHNOLOGY, 2000, 18 (06) :630-634
[5]   Re-engineering plant gene targeting [J].
Britt, AB ;
May, GD .
TRENDS IN PLANT SCIENCE, 2003, 8 (02) :90-95
[6]   Deficient in DNA methylation 1 (DDM1) defines a novel family of chromatin-remodeling factors [J].
Brzeski, J ;
Jerzmanowski, A .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (02) :823-828
[7]   REPAIR OF DOUBLE-STRAND BREAKS IN A TEMPERATURE CONDITIONAL RADIATION-SENSITIVE MUTANT OF SACCHAROMYCES CEREVISIAE [J].
BUDD, M ;
MORTIMER, RK .
MUTATION RESEARCH, 1982, 103 (01) :19-24
[8]   Severe developmental defects, hypersensitivity to DNA-damaging agents, and lengthened telomeres in Arabidopsis MRE11 mutants [J].
Bundock, P ;
Hooykaas, P .
PLANT CELL, 2002, 14 (10) :2451-2462
[9]   Increased telomere length and hypersensitivity to DNA damaging agents in an Arabidopsis KU70 mutant [J].
Bundock, P ;
van Attikum, H ;
Hooykaas, P .
NUCLEIC ACIDS RESEARCH, 2002, 30 (15) :3395-3400
[10]   ATP-dependent chromatin remodeling by the Cockayne syndrome B DNA repair-transcription-coupling factor [J].
Citterio, E ;
Van Den Boom, V ;
Schnitzler, G ;
Kanaar, R ;
Bonte, E ;
Kingston, RE ;
Hoeijmakers, JHJ ;
Vermeulen, W .
MOLECULAR AND CELLULAR BIOLOGY, 2000, 20 (20) :7643-7653