Tungsten behavior under proton flux and high temperature

被引:1
作者
Raunier, Sebastien [1 ]
Balat-Pichelin, Marianne [1 ]
Sans, Jean-Louis [1 ]
机构
[1] Lab PROMES CNRS, F-66120 Font Romeu, France
关键词
Tungsten; Solar furnace; High temperature; Proton flux; Reflectivity; PLASMA-FACING COMPONENTS; BLISTER FORMATION; LOW-ENERGY; DEUTERIUM RETENTION; FUSION-REACTOR; ITER; IRRADIATION; HYDROGEN; CARBON; SURFACE;
D O I
10.1016/j.nimb.2009.03.092
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
An experimental study of the physico-chemical behavior of tungsten under severe conditions is presented. High temperatures (1300 <= T <= 2500 K) generated by concentrated solar energy, high vacuum (similar to 10(-6) hPa) and proton flux (1 keV, similar to 10(17) ions m(-2) s(-1)) have been applied on polycrystalline W samples to simulate expected and also unexpected high heat loads that can occur on the ITER divertor (nominal and accidental conditions). During experiment, in situ measurements are performed and the material degradation, the mass loss kinetics, the characterization of the different species coming from the materials under coupled proton flux and high temperatures and the optical properties (reflectivity) are followed. Material characterization using SEM and XRD was investigated before and after treatment to understand the observed behavior. Bidirectional reflectivity measurements were carried out on the tested samples to explain the surface modifications, between the reference sample, the heated sample and the heated and ion irradiated one that can act on the thermo-radiative properties of tungsten. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:1841 / 1848
页数:8
相关论文
共 50 条
[31]   Tungsten erosion under combined hydrogen/helium high heat flux loading [J].
Maier, H. ;
Greuner, H. ;
Balden, M. ;
Boeswirth, B. ;
Elgeti , S. ;
Toussaint, U. V. ;
Linsmeier, Ch .
PHYSICA SCRIPTA, 2014, T159
[32]   Microstructural changes induced in advanced tungsten grades under high temperature neutron irradiation [J].
Van Renterghem, W. ;
Iroc, K. ;
Terentyev, D. ;
Antusch, S. ;
Rieth, M. .
INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2024, 122
[33]   High heat flux testing of mock-ups for a full tungsten ITER divertor [J].
Gavila, P. ;
Riccardi, B. ;
Constans, S. ;
Jouvelot, J. L. ;
Vastra, I. Bobin ;
Missirlian, M. ;
Richou, M. .
FUSION ENGINEERING AND DESIGN, 2011, 86 (9-11) :1652-1655
[34]   High-Temperature Heat Flux Sensor Based on Tungsten-Rhenium Thin-Film Thermocouple [J].
Fu, Xiaoli ;
Lin, Qiyu ;
Peng, Yongqing ;
Liu, Jianhua ;
Yang, Xiaofei ;
Zhu, Benpeng ;
Ouyang, Jun ;
Zhang, Yue ;
Xu, Liangcai ;
Chen, Shi .
IEEE SENSORS JOURNAL, 2020, 20 (18) :10444-10452
[35]   Role of carbon impurities on the surface morphology evolution of tungsten under high dose helium ion irradiation [J].
Al-Ajlony, A. ;
Tripathi, J. K. ;
Hassanein, A. .
JOURNAL OF NUCLEAR MATERIALS, 2015, 466 :569-575
[36]   A route to standardised high heat flux testing: An example for tungsten [J].
Schoofs, Frank ;
Gorley, Mike .
FUSION ENGINEERING AND DESIGN, 2019, 139 :132-136
[37]   D retention and depth profile behavior for single crystal tungsten with high temperature neutron irradiation [J].
Oya, Y. ;
Sun, F. ;
Yamauchi, Y. ;
Nobuta, Y. ;
Shimada, M. ;
Taylor, C. N. ;
Wampler, W. R. ;
Nakata, M. ;
Garrison, L. M. ;
Hatano, Y. .
JOURNAL OF NUCLEAR MATERIALS, 2020, 539
[38]   Hydrogen behavior in damaged tungsten by high-energy ion irradiation [J].
Fukumoto, M. ;
Kashiwagi, H. ;
Ohtsuka, Y. ;
Ueda, Y. ;
Nobuta, Y. ;
Yagyu, J. ;
Arai, T. ;
Taniguchi, M. ;
Inoue, T. ;
Sakamoto, K. .
JOURNAL OF NUCLEAR MATERIALS, 2009, 386-88 :768-771
[39]   Investigation of hydrogen behavior in tungsten exposed to high energy hydrogen plasma [J].
Liu, Fangshu ;
Zhang, Yong ;
Han, Wenjia ;
Yu, Jiangang ;
Lu, Guanghong ;
Zhu, Kaigui .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2013, 307 :320-+
[40]   High-heat flux tests of tungsten divertor mock-ups with steady-state plasma and e-beam [J].
Budaev, V. P. ;
Fedorovich, S. D. ;
Dedov, A., V ;
Karpov, A., V ;
Komov, A. T. ;
Martynenko, Yu, V ;
Giniyatulin, R. N. ;
Makhankov, A. N. ;
Litunovsky, N., V ;
Sliva, A. P. ;
Marchenkov, A. Yu ;
Gerasimov, D. N. ;
Gubkin, M. K. ;
Lukashevsky, M., V ;
Zakharenkov, A., V ;
Lazukin, A., V ;
Vasiliev, G. B. .
NUCLEAR MATERIALS AND ENERGY, 2020, 25