Accurate Localization of Inner Ear Regions of Interests Using Deep Reinforcement Learning

被引:4
作者
Radutoiu, Ana-Teodora [1 ]
Patou, Francois [2 ]
Margeta, Jan [3 ]
Paulsen, Rasmus R. [1 ]
Diez, Paula Lopez [1 ]
机构
[1] Tech Univ Denmark, DTU Compute, Lyngby, Denmark
[2] Oticon Med Res & Technol Grp, Smorum, Denmark
[3] KardioMe, Res & Dev, Nova Dubnica, Slovakia
来源
MACHINE LEARNING IN MEDICAL IMAGING, MLMI 2022 | 2022年 / 13583卷
关键词
Region of interest; Deep reinforcement learning; Computed tomography; Inner ear; Landmarks; Orientation; SEGMENTATION;
D O I
10.1007/978-3-031-21014-3_43
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a novel method for automatic ROI extraction. The method is implemented and tested for isolating the inner ear in full head CT scans. Extracting the ROI with high precision is in this case critical for surgical insertion of cochlear implants. Different parameters, such as CT equipment, image quality, anatomical variation, and the subject's head orientation during scanning make robust ROI extraction challenging. We propose to use state-of-the-art communicative multi-agent reinforcement learning to overcome these difficulties. We specify landmarks specifically designed to robustly extract orientation parameters such that all ROIs have the same orientation and include the relevant anatomy across the dataset. 140 full head CT scans were used to develop and test the ROI extraction pipeline. We report an average overall estimated error for landmark localization of 1.07 mm. Extracted ROI presented an intersection over union of 0.84 and a Dice similarity coefficient of 0.91.
引用
收藏
页码:416 / 424
页数:9
相关论文
共 16 条
  • [1] Evaluating reinforcement learning agents for anatomical landmark detection
    Alansary, Amir
    Oktay, Ozan
    Li, Yuanwei
    Le Folgoc, Loic
    Hou, Benjamin
    Vaillant, Ghislain
    Kamnitsas, Konstantinos
    Vlontzos, Athanasios
    Glocker, Ben
    Kainz, Bernhard
    Rueckert, Daniel
    [J]. MEDICAL IMAGE ANALYSIS, 2019, 53 : 156 - 164
  • [2] Stacked fully convolutional networks with multi-channel learning: application to medical image segmentation
    Bi, Lei
    Kim, Jinman
    Kumar, Ashnil
    Fulham, Michael
    Feng, Dagan
    [J]. VISUAL COMPUTER, 2017, 33 (6-8) : 1061 - 1071
  • [3] Liver segmentation from computed tomography scans: A survey and a new algorithm
    Campadelli, Paola
    Casiraghi, Elena
    Esposito, Andrea
    [J]. ARTIFICIAL INTELLIGENCE IN MEDICINE, 2009, 45 (2-3) : 185 - 196
  • [4] Chilamkurthy S, 2018, Arxiv, DOI arXiv:1803.05854
  • [5] 2D Image Classification for 3D Anatomy Localization: Employing Deep Convolutional Neural Networks
    de Vos, Bob D.
    Wolterink, Jelmer M.
    de Jong, Pim A.
    Viergever, Max A.
    Isgum, Ivana
    [J]. MEDICAL IMAGING 2016: IMAGE PROCESSING, 2016, 9784
  • [6] Diez P.L., 2022, P NO LIGHTS DEEP LEA, V3
  • [7] 3D Slicer as an image computing platform for the Quantitative Imaging Network
    Fedorov, Andriy
    Beichel, Reinhard
    Kalpathy-Cramer, Jayashree
    Finet, Julien
    Fillion-Robin, Jean-Christophe
    Pujol, Sonia
    Bauer, Christian
    Jennings, Dominique
    Fennessy, Fiona
    Sonka, Milan
    Buatti, John
    Aylward, Stephen
    Miller, James V.
    Pieper, Steve
    Kikinis, Ron
    [J]. MAGNETIC RESONANCE IMAGING, 2012, 30 (09) : 1323 - 1341
  • [8] Efficient Region of Interest Detection for Liver Segmentation using 3D CT Scans
    Hiraman, Anura
    Viriri, Serestina
    Gwetu, Mandlenkosi
    [J]. 2019 CONFERENCE ON INFORMATION COMMUNICATIONS TECHNOLOGY AND SOCIETY (ICTAS), 2019,
  • [9] Communicative Reinforcement Learning Agents for Landmark Detection in Brain Images
    Leroy, Guy
    Rueckert, Daniel
    Alansary, Amir
    [J]. MACHINE LEARNING IN CLINICAL NEUROIMAGING AND RADIOGENOMICS IN NEURO-ONCOLOGY, MLCN 2020, RNO-AI 2020, 2020, 12449 : 177 - 186
  • [10] Navarro F, 2020, PR MACH LEARN RES, V121, P544