Accurate Localization of Inner Ear Regions of Interests Using Deep Reinforcement Learning

被引:5
作者
Radutoiu, Ana-Teodora [1 ]
Patou, Francois [2 ]
Margeta, Jan [3 ]
Paulsen, Rasmus R. [1 ]
Diez, Paula Lopez [1 ]
机构
[1] Tech Univ Denmark, DTU Compute, Lyngby, Denmark
[2] Oticon Med Res & Technol Grp, Smorum, Denmark
[3] KardioMe, Res & Dev, Nova Dubnica, Slovakia
来源
MACHINE LEARNING IN MEDICAL IMAGING, MLMI 2022 | 2022年 / 13583卷
关键词
Region of interest; Deep reinforcement learning; Computed tomography; Inner ear; Landmarks; Orientation; SEGMENTATION;
D O I
10.1007/978-3-031-21014-3_43
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a novel method for automatic ROI extraction. The method is implemented and tested for isolating the inner ear in full head CT scans. Extracting the ROI with high precision is in this case critical for surgical insertion of cochlear implants. Different parameters, such as CT equipment, image quality, anatomical variation, and the subject's head orientation during scanning make robust ROI extraction challenging. We propose to use state-of-the-art communicative multi-agent reinforcement learning to overcome these difficulties. We specify landmarks specifically designed to robustly extract orientation parameters such that all ROIs have the same orientation and include the relevant anatomy across the dataset. 140 full head CT scans were used to develop and test the ROI extraction pipeline. We report an average overall estimated error for landmark localization of 1.07 mm. Extracted ROI presented an intersection over union of 0.84 and a Dice similarity coefficient of 0.91.
引用
收藏
页码:416 / 424
页数:9
相关论文
共 16 条
[1]   Evaluating reinforcement learning agents for anatomical landmark detection [J].
Alansary, Amir ;
Oktay, Ozan ;
Li, Yuanwei ;
Le Folgoc, Loic ;
Hou, Benjamin ;
Vaillant, Ghislain ;
Kamnitsas, Konstantinos ;
Vlontzos, Athanasios ;
Glocker, Ben ;
Kainz, Bernhard ;
Rueckert, Daniel .
MEDICAL IMAGE ANALYSIS, 2019, 53 :156-164
[2]   Stacked fully convolutional networks with multi-channel learning: application to medical image segmentation [J].
Bi, Lei ;
Kim, Jinman ;
Kumar, Ashnil ;
Fulham, Michael ;
Feng, Dagan .
VISUAL COMPUTER, 2017, 33 (6-8) :1061-1071
[3]   Liver segmentation from computed tomography scans: A survey and a new algorithm [J].
Campadelli, Paola ;
Casiraghi, Elena ;
Esposito, Andrea .
ARTIFICIAL INTELLIGENCE IN MEDICINE, 2009, 45 (2-3) :185-196
[4]  
Chilamkurthy S, 2018, Arxiv, DOI arXiv:1803.05854
[5]   2D Image Classification for 3D Anatomy Localization: Employing Deep Convolutional Neural Networks [J].
de Vos, Bob D. ;
Wolterink, Jelmer M. ;
de Jong, Pim A. ;
Viergever, Max A. ;
Isgum, Ivana .
MEDICAL IMAGING 2016: IMAGE PROCESSING, 2016, 9784
[6]  
Diez P.L., 2022, P NO LIGHTS DEEP LEA, V3
[7]   3D Slicer as an image computing platform for the Quantitative Imaging Network [J].
Fedorov, Andriy ;
Beichel, Reinhard ;
Kalpathy-Cramer, Jayashree ;
Finet, Julien ;
Fillion-Robin, Jean-Christophe ;
Pujol, Sonia ;
Bauer, Christian ;
Jennings, Dominique ;
Fennessy, Fiona ;
Sonka, Milan ;
Buatti, John ;
Aylward, Stephen ;
Miller, James V. ;
Pieper, Steve ;
Kikinis, Ron .
MAGNETIC RESONANCE IMAGING, 2012, 30 (09) :1323-1341
[8]   Efficient Region of Interest Detection for Liver Segmentation using 3D CT Scans [J].
Hiraman, Anura ;
Viriri, Serestina ;
Gwetu, Mandlenkosi .
2019 CONFERENCE ON INFORMATION COMMUNICATIONS TECHNOLOGY AND SOCIETY (ICTAS), 2019,
[9]   Communicative Reinforcement Learning Agents for Landmark Detection in Brain Images [J].
Leroy, Guy ;
Rueckert, Daniel ;
Alansary, Amir .
MACHINE LEARNING IN CLINICAL NEUROIMAGING AND RADIOGENOMICS IN NEURO-ONCOLOGY, MLCN 2020, RNO-AI 2020, 2020, 12449 :177-186
[10]  
Navarro F, 2020, PR MACH LEARN RES, V121, P544