A NEW APPROACH TO THE APPROXIMATE ANALYTIC SOLUTION OF THE THREE-DIMENSIONAL SCHR'ODINGER EQUATION FOR HYDROGENIC AND NEUTRAL ATOMS IN THE GENERALIZED HELLMANN POTENTIAL MODEL

被引:32
作者
Maireche, A. [1 ]
机构
[1] Univ Msila, Sci Fac, Phys Dept, Lab Phys & Mat Chem, BP 289 Chebilia Msila, Msila, Algeria
来源
UKRAINIAN JOURNAL OF PHYSICS | 2020年 / 65卷 / 11期
关键词
Schrodinger equation; Hellmann potential model; noncommutative quantum mechanics; star product; generalized Bopp's shift method; PHASE-SPACE; PARAMETERS; PRINCIPLE;
D O I
10.15407/ujpe65.11.987
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Within the framework of nonrelativistic noncommutative quantum mechanics using the improved approximation scheme to the centrifugal term for any 1-states via the generalized Bopp 's shift method and standard perturbation theory, we have obtained the energy eigenvalues of a newly proposed generalized Hellmann potential model (the GHP model) for the hydrogenic atoms and neutral atoms. The potential is a superposition of the attractive Coulomb potential plus Yukawa one, and new central terms appear as a result of the effects of noncommutativity properties of space and phase in the Hellmann potential model. The obtained energy eigenvalues appear as a function of the generalized gamma function, the discrete atomic quantum numbers (j,n,l,s and m), infinitesimal parameters (a, b, delta) which are induced by the position-position and phase-phase noncommutativity, and, the dimensional parameters (circle minus, (theta) over bar) of the GHP model, in the nonrelativistic noncommutative three-dimensional real space phase (NC: 3D-RSP). Furthermore, we have shown that the corresponding Hamiltonian operator with (NC: 3D-RSP) symmetries is the sum of the Hamiltonian operator of the Hellmann potential model and two operators, the first one is the modified spin-orbit interaction, while the second is the modified Zeeman operator for the hydrogenic and neutral atoms.
引用
收藏
页码:987 / 1001
页数:15
相关论文
共 46 条
[1]   Weyl-Wigner formulation of noncommutative quantum mechanics [J].
Bastos, Catarina ;
Bertolami, Orfeu ;
Dias, Nuno Costa ;
Prata, Joao Nuno .
JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (07)
[2]   Scaling of variables and the relation between noncommutative parameters in noncommutative quantum mechanics [J].
Bertolami, O ;
Rosa, JG ;
de Aragao, CML ;
Castorina, P ;
Zappalà, D .
MODERN PHYSICS LETTERS A, 2006, 21 (10) :795-802
[3]   Aspects of phase-space noncommutative quantum mechanics [J].
Bertolami, O. ;
Leal, P. .
PHYSICS LETTERS B, 2015, 750 :6-11
[4]   Generalized uncertainty principle from quantum geometry [J].
Capozziello, S ;
Lambiase, G ;
Scarpetta, G .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2000, 39 (01) :15-22
[5]   Hydrogen atom spectrum and the Lamb shift in noncommutative QED [J].
Chaichian, M ;
Sheikh-Jabbari, MM ;
Tureanu, A .
PHYSICAL REVIEW LETTERS, 2001, 86 (13) :2716-2719
[6]   The Klein-Gordon equation with the Kratzer potential in the noncommutative space [J].
Darroodi, M. ;
Mehraban, H. ;
Hassanabadi, S. .
MODERN PHYSICS LETTERS A, 2018, 33 (35)
[7]   On quantum mechanics on noncommutative quantum phase space [J].
Djemaï, AEF ;
Smail, H .
COMMUNICATIONS IN THEORETICAL PHYSICS, 2004, 41 (06) :837-844
[8]   Analytical approximations to the l-wave solutions of the Schrodinger equation with the Eckart potential [J].
Dong, Shi-Hai ;
Qiang, Wen-Chao ;
Sun, Guo-Hua ;
Bezerra, V. B. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (34) :10535-10540
[9]  
Edet C. O., 2020, Rev. Bras. Ensino Fís., V42, pe20190083
[10]   Any l-state solutions of the Schrodinger equation interacting with Hellmann-Kratzer potential model [J].
Edet, C. O. ;
Okorie, Kalu Okam ;
Louis, Hitler ;
Nzeata-Ibe, Nelson A. .
INDIAN JOURNAL OF PHYSICS, 2020, 94 (02) :243-251