Enriched hydrogen production over air and air-steam fluidized bed gasification in a bubbling fluidized bed reactor with CaO: Effects of biomass and bed material catalyst

被引:62
作者
Nam, Hyungseok [1 ,2 ]
Wang, Shuang [1 ]
Sanjeev, K. C. [2 ]
Seo, Myung Won [1 ]
Adhikari, Sushil [2 ,3 ]
Shakya, Rajdeep [2 ]
Lee, Doyeon [1 ]
Shanmugam, Saravanan R. [2 ,4 ]
机构
[1] Korea Inst Energy Res, Daejeon 34129, South Korea
[2] Auburn Univ, Dept Biosyst Engn, Auburn, AL 36849 USA
[3] Auburn Univ, Ctr Bioenergy & Bioprod, Auburn, AL 36849 USA
[4] Sastra Deemed Univ, Thanjavur 613401, Tamil Nadu, India
基金
美国食品与农业研究所;
关键词
CaO sorption enhanced; Air-steam gasification; Fluidized bed; Pinewood; Syngas; Hydrogen; COAL-GASIFICATION; ACTIVATED CARBON; SYNGAS; HEMICELLULOSE; PERFORMANCE; PYROLYSIS; CELLULOSE; DOLOMITE; BEHAVIOR; QUALITY;
D O I
10.1016/j.enconman.2020.113408
中图分类号
O414.1 [热力学];
学科分类号
摘要
Gasification is one of the methods of generating biopower or biofuels from biomass waste. In this study, a bench-scale fluidized bed reactor was used for biomass air and air-steam gasification. Gasification was performed under constant operating conditions (similar to 780 degrees C, equivalence ratio = similar to 0.32) to investigate the effect of biomass (switchgrass, pine residues) and bed materials (sand, CaO+ sand, Al2O3, and CaO + Al2O3). All gasification products, such as synthesis gas (syngas), contaminant gases, tar, and biochar (solid) were comprehensively analyzed. The composition of biomass significantly impacted CO and H-2 yield from volatile combustible matter and fixed carbon. Further, the presence of CaO made the condition favorable for the water-gas shift (WGS) reaction combined with the CO2 carbonation reaction, which increased H-2 concentration. Additional steam with CaO increased H-2 concentration closer to 50% (N-2 free condition) through the combination reactions of steam hydrocarbon reforming and WGS by producing 44 g(H2)/kg(dry biomass) and 143 g(CO)/kg(dry biomass). The usage of steam reduced the overall yield of contaminant gases, whereas the usage of CaO or Al2O3 decreased the amount of gasification tar by approximately 5.8-6.5 g(tar)/kg(dry biomass). This study can provide valuable experimental data for biomass waste to produce better quality syngas.
引用
收藏
页数:11
相关论文
共 49 条
[1]   A review on biomass gasification syngas cleanup [J].
Abdoulmoumine, Nourredine ;
Adhikari, Sushil ;
Kulkarni, Avanti ;
Chattanathan, Shyamsundar .
APPLIED ENERGY, 2015, 155 :294-307
[2]   Effects of Temperature and Equivalence Ratio on Pine Syngas Primary Gases and Contaminants in a Bench-Scale Fluidized Bed Gasifier [J].
Abdoulmoumine, Nourredine ;
Kulkarni, Avanti ;
Adhikari, Sushil .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2014, 53 (14) :5767-5777
[3]   Kinetics of woodchips char gasification with steam and carbon dioxide [J].
Ahmed, I. I. ;
Gupta, A. K. .
APPLIED ENERGY, 2011, 88 (05) :1613-1619
[4]  
[Anonymous], 1998, BIOMASS GASIFIER TAR
[5]  
[Anonymous], 2009, CHLORINE ISSUES BIOM
[6]   Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 1: Pyrolysis systems [J].
Balat, Mustafa ;
Balat, Mehmet ;
Kirtay, Elif ;
Balat, Havva .
ENERGY CONVERSION AND MANAGEMENT, 2009, 50 (12) :3147-3157
[7]   An advanced biomass gasification-proton exchange membrane fuel cell system for power generation [J].
Beheshti, S. M. ;
Ghassemi, H. ;
Shahsavan-Markadeh, R. .
JOURNAL OF CLEANER PRODUCTION, 2016, 112 :995-1000
[8]   Super-dry reforming of methane intensifies CO2 utilization via Le Chatelier's principle [J].
Buelens, Lukas C. ;
Galvita, Vladimir V. ;
Poelman, Hilde ;
Detavernier, Christophe ;
Marin, Guy B. .
SCIENCE, 2016, 354 (6311) :449-452
[9]   Thermodynamic equilibrium analysis of H2-rich syngas production via sorption-enhanced chemical looping biomass gasification [J].
Chein, Rei-Yu ;
Hsu, Wen-Huai .
RENEWABLE ENERGY, 2020, 153 :117-129
[10]   Bubbling fluidized bed gasification of short rotation Eucalyptus: Effect of harvesting age and bark [J].
Cross, Phillip ;
Kulkarni, Avanti ;
Nam, Hyungseok ;
Adhikari, Sushil ;
Fasina, Oladiran .
BIOMASS & BIOENERGY, 2018, 110 :98-104