Entanglement-enhanced matter-wave interferometry in a high-finesse cavity

被引:75
作者
Greve, Graham P. [1 ,2 ]
Luo, Chengyi [1 ,2 ]
Wu, Baochen [1 ,2 ]
Thompson, James K. [1 ,2 ]
机构
[1] Univ Colorado, NIST, JILA, Boulder, CO 80309 USA
[2] Univ Colorado, Dept Phys, Boulder, CO 80309 USA
基金
美国国家科学基金会;
关键词
PROJECTION NOISE; BACK-ACTION; QUANTUM; GENERATION; GRAVITY; ATOMS; TIMES;
D O I
10.1038/s41586-022-05197-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
An ensemble of atoms can operate as a quantum sensor by placing atoms in a superposition of two different states. Upon measurement of the sensor, each atom is individually projected into one of the two states. Creating quantum correlations between the atoms, that is entangling them, could lead to resolutions surpassing the standard quantum limit(1-3) set by projections of individual atoms. Large amounts of entanglement(4-6) involving the internal degrees of freedom of laser-cooled atomic ensembles(4-16) have been generated in collective cavity quantum-electrodynamics systems, in which many atoms simultaneously interact with a single optical cavity mode. Here we report a matter-wave interferometer in a cavity quantum-electrodynamics system of 700 atoms that are entangled in their external degrees of freedom. In our system, each individual atom falls freely under gravity and simultaneously traverses two paths through space while entangled with the other atoms. We demonstrate both quantum non-demolition measurements and cavity-mediated spin interactions for generating squeezed momentum states with directly observed sensitivity 3.4(- 0.9)(+1.1) dB and 2.5(- 0.6)(+0.6) dB below the standard quantum limit, respectively. We successfully inject an entangled state into a Mach-Zehnder light-pulse interferometer with directly observed sensitivity 1.7(- 0.5)(+0.5) dB below the standard quantum limit. The combination of particle delocalization and entanglement in our approach may influence developments of enhanced inertial sensors(17,18), searches for new physics, particles and fields(19-23), future advanced gravitational wave detectors(24,25) and accessing beyond mean-field quantum many-body physics(26-30).
引用
收藏
页码:472 / +
页数:10
相关论文
共 57 条
[1]   Matter-wave Atomic Gradiometer Interferometric Sensor (MAGIS-100) [J].
Abe, Mahiro ;
Adamson, Philip ;
Borcean, Marcel ;
Bortoletto, Daniela ;
Bridges, Kieran ;
Carman, Samuel P. ;
Chattopadhyay, Swapan ;
Coleman, Jonathon ;
Curfman, Noah M. ;
DeRose, Kenneth ;
Deshpande, Tejas ;
Dimopoulos, Savas ;
Foot, Christopher J. ;
Frisch, Josef C. ;
Garber, Benjamin E. ;
Geer, Steve ;
Gibson, Valerie ;
Glick, Jonah ;
Graham, Peter W. ;
Hahn, Steve R. ;
Harnik, Roni ;
Hawkins, Leonie ;
Hindley, Sam ;
Hogan, Jason M. ;
Jiang, Yijun ;
Kasevich, Mark A. ;
Kellett, Ronald J. ;
Kiburg, Mandy ;
Kovachy, Tim ;
Lykken, Joseph D. ;
March-Russell, John ;
Mitchell, Jeremiah ;
Murphy, Martin ;
Nantel, Megan ;
Nobrega, Lucy E. ;
Plunkett, Robert K. ;
Rajendran, Surjeet ;
Rudolph, Jan ;
Sachdeva, Natasha ;
Safdari, Murtaza ;
Santucci, James K. ;
Schwartzman, Ariel G. ;
Shipsey, Ian ;
Swan, Hunter ;
Valerio, Linda R. ;
Vasonis, Arvydas ;
Wang, Yiping ;
Wilkason, Thomas .
QUANTUM SCIENCE AND TECHNOLOGY, 2021, 6 (04)
[2]   Momentum Entanglement for Atom Interferometry [J].
Anders, F. ;
Idel, A. ;
Feldmann, P. ;
Bondarenko, D. ;
Loriani, S. ;
Lange, K. ;
Peise, J. ;
Gersemann, M. ;
Meyer-Hoppe, B. ;
Abend, S. ;
Gaaloul, N. ;
Schubert, C. ;
Schlippert, D. ;
Santos, L. ;
Rasel, E. ;
Klempt, C. .
PHYSICAL REVIEW LETTERS, 2021, 127 (14)
[3]  
Bohnet JG, 2014, NAT PHOTONICS, V8, P731, DOI [10.1038/NPHOTON.2014.151, 10.1038/nphoton.2014.151]
[4]   One- and two-axis squeezing of atomic ensembles in optical cavities [J].
Borregaard, J. ;
Davis, E. J. ;
Bentsen, G. S. ;
Schleier-Smith, M. H. ;
Sorensen, A. S. .
NEW JOURNAL OF PHYSICS, 2017, 19
[5]   Near-Unitary Spin Squeezing in 171Yb [J].
Braverman, Boris ;
Kawasaki, Akio ;
Pedrozo-Penafiel, Edwin ;
Colombo, Simone ;
Shu, Chi ;
Li, Zeyang ;
Mendez, Enrique ;
Yamoah, Megan ;
Salvi, Leonardo ;
Akamatsu, Daisuke ;
Xiao, Yanhong ;
Vuletic, Vladan .
PHYSICAL REVIEW LETTERS, 2019, 122 (22)
[6]  
Bücker R, 2011, NAT PHYS, V7, P608, DOI [10.1038/nphys1992, 10.1038/NPHYS1992]
[7]   Exploring gravity with the MIGA large scale atom interferometer [J].
Canuel, B. ;
Bertoldi, A. ;
Amand, L. ;
di Borgo, E. Pozzo ;
Chantrait, T. ;
Danquigny, C. ;
Alvarez, M. Dovale ;
Fang, B. ;
Freise, A. ;
Geiger, R. ;
Gillot, J. ;
Henry, S. ;
Hinderer, J. ;
Holleville, D. ;
Junca, J. ;
Lefevre, G. ;
Merzougui, M. ;
Mielec, N. ;
Monfret, T. ;
Pelisson, S. ;
Prevedelli, M. ;
Reynaud, S. ;
Riou, I. ;
Rogister, Y. ;
Rosat, S. ;
Cormier, E. ;
Landragin, A. ;
Chaibi, W. ;
Gaffet, S. ;
Bouyer, P. .
SCIENTIFIC REPORTS, 2018, 8
[8]   Cavity-aided nondemolition measurements for atom counting and spin squeezing [J].
Chen, Zilong ;
Bohnet, Justin G. ;
Weiner, Joshua M. ;
Cox, Kevin C. ;
Thompson, James K. .
PHYSICAL REVIEW A, 2014, 89 (04)
[9]  
Chen Zilong., 2011, Physical Review Letters, V106
[10]   Time-reversal-based quantum metrology with many-body entangled states [J].
Colombo, Simone ;
Pedrozo-Penafiel, Edwin ;
Adiyatullin, Albert F. ;
Li, Zeyang ;
Mendez, Enrique ;
Shu, Chi ;
Vuletic, Vladan .
NATURE PHYSICS, 2022, 18 (08) :925-+