A proximal cutting plane method using Chebychev center for nonsmooth convex optimization

被引:16
作者
Ouorou, Adam [1 ]
机构
[1] CORE MCN, Res & Dev, Orange Labs, F-92794 Issy Les Moulineaux 9, France
关键词
Nonsmooth optimization; Subgradient; Proximal bundle methods; Cutting plane methods; Convex programming; BUNDLE METHODS; ALGORITHM; CONVERGENCE;
D O I
10.1007/s10107-008-0209-x
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
An algorithm is developed for minimizing nonsmooth convex functions. This algorithm extends Elzinga-Moore cutting plane algorithm by enforcing the search of the next test point not too far from the previous ones, thus removing compactness assumption. Our method is to Elzinga-Moore's algorithm what a proximal bundle method is to Kelley's algorithm. Instead of lower approximations used in proximal bundle methods, the present approach is based on some objects regularizing translated functions of the objective function. We propose some variants and using some academic test problems, we conduct a numerical comparative study with Elzinga-Moore algorithm and two other well-known nonsmooth methods.
引用
收藏
页码:239 / 271
页数:33
相关论文
共 35 条
[1]  
[Anonymous], 2001, Computational Combinatorial Optimization: Optimal or Provably Near-Optimal Solutions. Ed. by, DOI [DOI 10.1007/3-540-45586-8_4, 10.1007/3-540-45586-8_4]
[2]  
[Anonymous], 1996, Die Grundlehren der mathematischen Wissenschaften
[3]  
[Anonymous], 2003, INTRO LECT CONVEX PR
[4]  
[Anonymous], 1971, Math Program, DOI DOI 10.1007/BF01584070
[5]  
Babonneau F, 2007, ADV COMPUT MANAG SCI, V9, P67
[6]   A constraint generation algorithm for large scale linear programs using multiple-points separation [J].
Ben-Ameur, W ;
Neto, J .
MATHEMATICAL PROGRAMMING, 2006, 107 (03) :517-537
[7]   Acceleration of cutting-plane and column generation algorithms: Applications to network design [J].
Ben-Ameur, Walid ;
Neto, Jose .
NETWORKS, 2007, 49 (01) :3-17
[8]   An accelerated central cutting plane algorithm for linear semi-infinite programming [J].
Betrò, B .
MATHEMATICAL PROGRAMMING, 2004, 101 (03) :479-495
[9]  
Boyd S., 2004, CONVEX OPTIMIZATION, DOI DOI 10.1017/CBO9780511804441
[10]  
Cheney EW., 1959, NUMER MATH, V1, P253, DOI [10.1007/bf01386389, DOI 10.1007/BF01386389]