Remarks on the regularity criterion to the Navier-Stokes equations via the gradient of one velocity component

被引:13
作者
Ye, Zhuan [1 ]
机构
[1] Beijing Normal Univ, Minist Educ, Sch Math Sci, Lab Math & Complex Syst, Beijing 100875, Peoples R China
关键词
Regularity criterion; Navier-Stokes equations; WEAK SOLUTIONS; GLOBAL REGULARITY; VORTICITY; TERMS;
D O I
10.1016/j.jmaa.2015.11.037
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the classical three-dimensional (3D) incompressible Navier-Stokes equations. By making use of a new anisotropic Sobolev inequality, we improve a regularity criterion for the weak solution to the 3D Navier-Stokes equations involving the gradient of one velocity component. This result improves the previous work of Zhou and Pokorny (2010). (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:1623 / 1633
页数:11
相关论文
共 39 条
[1]  
[Anonymous], 1985, Appl. Math. Sci.
[2]  
[Anonymous], 2002, Methods Appl. Anal.
[3]  
[Anonymous], 2002, Electron. J. Differ. Equ
[4]  
[Anonymous], ARXIV12122335V2MATHA
[5]  
[Anonymous], ARXIV13106442MATHAP
[6]   PARTIAL REGULARITY OF SUITABLE WEAK SOLUTIONS OF THE NAVIER-STOKES EQUATIONS [J].
CAFFARELLI, L ;
KOHN, R ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1982, 35 (06) :771-831
[7]   Global Regularity Criterion for the 3D Navier-Stokes Equations Involving One Entry of the Velocity Gradient Tensor [J].
Cao, Chongsheng ;
Titi, Edriss S. .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2011, 202 (03) :919-932
[8]   Regularity Criteria for the Three-dimensional Navier-Stokes Equations [J].
Cao, Chongsheng ;
Titi, Edriss S. .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2008, 57 (06) :2643-2661
[9]   DIRECTION OF VORTICITY AND THE PROBLEM OF GLOBAL REGULARITY FOR THE NAVIER-STOKES EQUATIONS [J].
CONSTANTIN, P ;
FEFFERMAN, C .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1993, 42 (03) :775-789
[10]  
daVeiga HB, 1995, CHINESE ANN MATH B, V16, P407