Small eigenvalues of large Hankel matrices

被引:23
作者
Chen, Y [1 ]
Lawrence, N [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2BZ, England
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1999年 / 32卷 / 42期
关键词
D O I
10.1088/0305-4470/32/42/306
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we investigate the smallest eigenvalue, denoted as lambda(N), of a (N+1) X (N+1) Hankel or moments matrix, associated with the weight, w(x) = exp(-x(beta)), x > 0, beta > 0, in the large N limit. Using a previous result, the asymptotics for the polynomials, P-n(z), z is not an element of [0, infinity), orthonormal with respect to w, which are required in the determination of lambda(N) are found. Adopting an argument of Szego the asymptotic behaviour of lambda(N), for beta > 1/2 where the related moment problem is determinate, is derived. This generalizes the result given by Szego for beta = 1. It is shown that for beta > 1/2 the smallest eigenvalue of the infinite Hankel matrix is zero, while for 0 < beta < 1/2 it is greater then a positive constant. This shows a phase transition in the corresponding identified as the critical Hermitian random matrix model as the parameter beta varies with beta = 1/2 point. The smallest eigenvalue at this point is conjectured.
引用
收藏
页码:7305 / 7315
页数:11
相关论文
共 12 条
[1]  
Akhiezer N. I., 1965, LECT APPROXIMATION T
[2]  
BERG C, 1999, SMALL EIGENVALUES LA
[3]  
BRENT RP, 1981, TRCS8108 AUSTR NAT U
[4]   On the linear statistics of Hermitian random matrices [J].
Chen, Y ;
Lawrence, N .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (04) :1141-1152
[5]   Thermodynamic relations of the Hermitian matrix ensembles [J].
Chen, Y ;
Ismail, MEH .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (19) :6633-6654
[6]  
Golub GH, 2013, Matrix Computations, V4
[7]  
Gradshteyn I. S., 1994, TABLE INTEGALS SERIE
[8]  
Szego G., 1982, COLLECT PAPERS, V2, P666, DOI [10.1090/s0002-9947-1936-1501884-1, DOI 10.1090/S0002-9947-1936-1501884-1]
[9]  
SZEGO G, 1982, COLLECT PAPERS, V1, P111
[10]  
Szego G., 1975, C PUBLICATIONS, VXXIII