Numerical approximations for a phase-field moving contact line model with variable densities and viscosities

被引:72
|
作者
Yu, Haijun [1 ,2 ]
Yang, Xiaofeng [3 ]
机构
[1] Acad Math & Syst Sci, Inst Computat Math, NCMIS, Beijing, Peoples R China
[2] Acad Math & Syst Sci, Inst Computat Math, LSEC, Beijing, Peoples R China
[3] Univ South Carolina, Dept Math, Columbia, SC 29208 USA
基金
美国国家科学基金会;
关键词
Phase-field; Multiphase flows; Navier-Stokes; Cahn-Hilliard; Moving contact line; Stability; 2-PHASE INCOMPRESSIBLE FLOWS; CAHN-HILLIARD EQUATION; FOURIER-SPECTRAL METHOD; LEVEL-SET METHOD; MOLECULAR-DYNAMICS; COMPLEX FLUIDS; SOLID-SURFACES; INTERFACE; SIMULATIONS; SCHEME;
D O I
10.1016/j.jcp.2017.01.026
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We consider the numerical approximations of a two-phase hydrodynamics coupled phase field model that incorporates the variable densities, viscosities and moving contact line boundary conditions. The model is a nonlinear, coupled system that consists of incompressible Navier-Stokes equations with the generalized Navier boundary condition, and the Cahn-Hilliard equations with moving contact line boundary conditions. By some subtle explicit-implicit treatments to nonlinear terms, we develop two efficient, unconditionally energy stable numerical schemes, in particular, a linear decoupled energy stable scheme for the system with static contact line condition, and a nonlinear energy stable scheme for the system with dynamic contact line condition. An efficient spectralGalerkin spatial discretization is implemented to verify the accuracy and efficiency of proposed schemes. Various numerical results show that the proposed schemes are efficient and accurate. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:665 / 686
页数:22
相关论文
共 50 条
  • [21] Numerical approximations of a hydro-dynamically coupled phase-field model for binary mixture of passive/active nematic liquid crystals and viscous fluids
    Chen, Chuanjun
    Pan, Kejia
    Yang, Xiaofeng
    APPLIED NUMERICAL MATHEMATICS, 2020, 158 : 1 - 21
  • [22] Numerical Approximations for the Cahn-Hilliard Phase Field Model of the Binary Fluid-Surfactant System
    Yang, Xiaofeng
    JOURNAL OF SCIENTIFIC COMPUTING, 2018, 74 (03) : 1533 - 1553
  • [23] Numerical Approximation of a Phase-Field Surfactant Model with Fluid Flow
    Zhu, Guangpu
    Kou, Jisheng
    Sun, Shuyu
    Yao, Jun
    Li, Aifen
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 80 (01) : 223 - 247
  • [24] THE SHARP INTERFACE LIMIT OF A PHASE FIELD MODEL FOR MOVING CONTACT LINE PROBLEM
    Wang, Xiao-Ping
    Wang, Ya-Guang
    METHODS AND APPLICATIONS OF ANALYSIS, 2007, 14 (03) : 287 - 294
  • [25] Decoupled, energy stable schemes for a phase-field surfactant model
    Zhu, Guangpu
    Kou, Jisheng
    Sun, Shuyu
    Yao, Jun
    Li, Aifen
    COMPUTER PHYSICS COMMUNICATIONS, 2018, 233 : 67 - 77
  • [26] A lattice Boltzmann model for multiphase flows with moving contact line and variable density
    Huang, Jizu
    Wang, Xiao-Ping
    JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 353 : 26 - 45
  • [27] Decoupled Energy Stable Schemes for a Phase-Field Model of Two-Phase Incompressible Flows with Variable Density
    Liu, Chun
    Shen, Jie
    Yang, Xiaofeng
    JOURNAL OF SCIENTIFIC COMPUTING, 2015, 62 (02) : 601 - 622
  • [28] Decoupled energy stable schemes for phase-field vesicle membrane model
    Chen, Rui
    Ji, Guanghua
    Yang, Xiaofeng
    Zhang, Hui
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 302 : 509 - 523
  • [29] Numerical solution to phase-field model of solidification: A review
    Zhang, Ang
    Guo, Zhipeng
    Jiang, Bin
    Xiong, Shoumei
    Pan, Fusheng
    COMPUTATIONAL MATERIALS SCIENCE, 2023, 228
  • [30] Numerical Phase-Field Model Validation for Dissolution of Minerals
    Yang, Sha
    Ukrainczyk, Neven
    Caggiano, Antonio
    Koenders, Eddie
    APPLIED SCIENCES-BASEL, 2021, 11 (06):