Circumventing the no-go theorem: A single Weyl point without surface Fermi arcs

被引:57
作者
Yu, Zhi-Ming [1 ]
Wu, Weikang [1 ]
Zhao, Y. X. [2 ,3 ,4 ]
Yang, Shengyuan A. [1 ]
机构
[1] Singapore Univ Technol & Design, Res Lab Quantum Mat, Singapore 487372, Singapore
[2] Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing 210093, Jiangsu, Peoples R China
[3] Nanjing Univ, Dept Phys, Nanjing 210093, Jiangsu, Peoples R China
[4] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Jiangsu, Peoples R China
关键词
SEMIMETAL; NEUTRINOS; ABSENCE; LATTICE;
D O I
10.1103/PhysRevB.100.041118
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Despite a rapidly expanding inventory of possible crystalline Weyl semimetals, all of them are constrained by the Nielsen-Ninomiya no-go theorem, namely, that left- and right-handed Weyl points appear in pairs. With time-reversal (T) symmetry, an even stronger version holds for the semimetals, i.e., all eight time-reversal-invariant points in the Brillouin zone (BZ) simultaneously host Weyl points or not. Accompanying the no-go theorem, the surface of the system features Fermi arc states, which connect pairs of surface projected Weyl points. Here, we explicitly construct a topological phase of a T-invariant crystalline metal, which features a single Weyl point residing at the center of the BZ, surrounded by nodal walls spreading over the entire BZ boundary. In other words, a single Weyl point is realized with the no-go theorem being circumvented. Moreover, the surface Fermi arcs, considered as a hallmark of Weyl semimetals, do not appear for this composite topological phase. We show that this phase can be realized for space groups No. 19 and No. 92, with and without spin-orbit coupling, respectively.
引用
收藏
页数:6
相关论文
共 90 条
[1]  
[Anonymous], 2003, UNIVERSE HELIUM DROP
[2]   Weyl and Dirac semimetals in three-dimensional solids [J].
Armitage, N. P. ;
Mele, E. J. ;
Vishwanath, Ashvin .
REVIEWS OF MODERN PHYSICS, 2018, 90 (01)
[3]  
Bradley C J, 1972, MATH THEORY SYMMETRY
[4]   Chiral Anomaly and Diffusive Magnetotransport in Weyl Metals [J].
Burkov, A. A. .
PHYSICAL REVIEW LETTERS, 2014, 113 (24)
[5]   Weyl Semimetal in a Topological Insulator Multilayer [J].
Burkov, A. A. ;
Balents, Leon .
PHYSICAL REVIEW LETTERS, 2011, 107 (12)
[6]   Robust doubly charged nodal lines and nodal surfaces in centrosymmetric systems [J].
Bzdusek, Tomas ;
Sigrist, Manfred .
PHYSICAL REVIEW B, 2017, 96 (15)
[7]   Topological quantum properties of chiral crystals [J].
Chang, Guoqing ;
Wieder, Benjamin J. ;
Schindler, Frank ;
Sanchez, Daniel S. ;
Belopolski, Ilya ;
Huang, Shin-Ming ;
Singh, Bahadur ;
Wu, Di ;
Chang, Tay-Rong ;
Neupert, Titus ;
Xu, Su-Yang ;
Lin, Hsin ;
Hasan, M. Zahid .
NATURE MATERIALS, 2018, 17 (11) :978-+
[8]   RKKY interaction of magnetic impurities in Dirac and Weyl semimetals [J].
Chang, Hao-Ran ;
Zhou, Jianhui ;
Wang, Shi-Xiong ;
Shan, Wen-Yu ;
Xiao, Di .
PHYSICAL REVIEW B, 2015, 92 (24)
[9]   Disorder and Metal-Insulator Transitions in Weyl Semimetals [J].
Chen, Chui-Zhen ;
Song, Juntao ;
Jiang, Hua ;
Sun, Qing-feng ;
Wang, Ziqiang ;
Xie, X. C. .
PHYSICAL REVIEW LETTERS, 2015, 115 (24)
[10]  
Cooper NR, 2019, REV MOD PHYS, V91, DOI [10.1103/RevModPhys.91.015005, 10.1103/revmodphys.91.015005]