Dust devil track survey at Elysium Planitia, Mars: Implications for the In Sight landing sites

被引:40
作者
Reiss, Dennis [1 ]
Lorenz, Ralph D. [2 ]
机构
[1] Univ Munster, Inst Planetol, D-48149 Munster, Germany
[2] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA
关键词
Mars; atmosphere Mars; surface Atmospheres; dynamics; PLANETARY BOUNDARY-LAYER; STATISTICAL DISTRIBUTION; ATMOSPHERIC DUST; THERMAL INERTIA; ORBITER CAMERA; ALBEDO CHANGES; SURFACE; MOTION; FREQUENCY; VORTICES;
D O I
10.1016/j.icarus.2015.11.012
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) robotic lander is scheduled to land in Elysium Planitia on Mars in September 2016. InSight will perform the first comprehensive surface-based geophysical investigation including seismic measurements. Knowledge about encounter rates of dust devils with the InSight lander are important for two main reasons: (1) dust devils will affect the scientific measurements, i.e., wind-induced seismic noise, and (2) the power-supply of the InSight lander and instruments is provided by solar arrays and previous landers and rovers on Mars were affected by a steady decline in electrical power output due to atmospheric dust deposition on the solar panels. Long term science operations were only made possible by dust clearing events of the solar arrays caused by wind gusts and dust devils. In this study we analyzed dust devil tracks (DDTs) at the final InSight landing site region in Elysium Planitia. Formation of DDTs is caused by the removal of a layer of dust by passing dust devils, hence in principle the same process as clearing of dust from solar panels. We mapped the number, size (width and length), and orientation of DDTs in repeat observations using High Resolution Imaging Science Experiment (HiRISE) images covering the exact same surface area acquired within a relatively short time span (<90 martian days). In total, we analyzed 557 newly formed dust devil tracks in 8 study areas. DDTs are morphologically relatively straight with a low mean sinuosity of 1.03 and only reach maximum widths of 30 m. The mean DDT width is 4 m, indicating that the dust devil size population is dominated by small dust devils with a diameter <10 m. The size-frequency distribution of DDTs follows a 2 power law. The mean lengths of DDTs are 0.62 km and 1.23 km for complete (tracks which are visible from their start to end point) and incomplete DDTs (tracks running across the HiRISE footprint), respectively. The alignment of DDTs in combination with Mars Climate Database (MCD) predicted wind directions imply that dust devils are moving from SE to NW until early northern autumn with a reversal to NW-SE directions of movement at L-s = 200 degrees consistent with the seasonal reversal in direction of the Hadley circulation. DDT formation rates vary between 0.002 and 0.08 ddt km(-2) sol(-1). DDT area formation rates using the measured DDT widths, lengths, and formation rates are in the range of 0.0003-0.00006 km(2) km(-2) sol(-1), implying that a given spot on the surface may be cleared of dust only once between similar to 3000 and 16,000 sols (i.e. every similar to 5-24 Mars years). Measured DDT formation rates were used to find a scaling factor to the seasonal DDA index, and then integrated over the year to estimate a mean annual DDT formation rate of 0.046 ddt km(-2) sol(-1). This translates into a solar panel clearing recurrence interval estimate of 11 Mars years using the mean annual DDT formation rate, and the mean DDT width and length from all measured DDTs. Due to several uncertainties this solar panel clearing recurrence interval for the InSight landing should be seen as an upper limit estimate. (c) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:315 / 330
页数:16
相关论文
共 97 条
  • [41] Martian variable features: New insight from the Mars Express Orbiter and the Mars Exploration Rover Spirit
    Greeley, R
    Arvidson, R
    Bell, JF
    Christensen, P
    Foley, D
    Haldemann, A
    Kuzmin, RO
    Landis, G
    Neakrase, LDV
    Neukum, G
    Squyres, SW
    Sullivan, R
    Thompson, SD
    Whelley, PL
    Williams, D
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2005, 110 (E6) : 1 - 7
  • [42] Active dust devils in Gusev crater, Mars: Observations from the Mars Exploration Rover Spirit
    Greeley, Ronald
    Whelley, Patrick L.
    Arvidson, Raymond E.
    Cabrol, Nathalie A.
    Foley, Daniel J.
    Franklin, Brenda J.
    Geissler, Paul G.
    Golombek, Matthew P.
    Kuzmin, Ruslan O.
    Landis, Geoffrey A.
    Lemmon, Mark T.
    Neakrase, Lynn D. V.
    Squyres, Steven W.
    Thompson, Shane D.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2006, 111 (E12)
  • [43] Gusev Crater, Mars: Observations of three dust devil seasons
    Greeley, Ronald
    Waller, Devin A.
    Cabrol, Nathalie A.
    Landis, Geoffrey A.
    Lemmon, Mark T.
    Neakrase, Lynn D. V.
    Hoffer, Mary Pendleton
    Thompson, Shane D.
    Whelley, Patrick L.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2010, 115
  • [44] Preliminary interpretation of the REMS pressure data from the first 100 sols of the MSL mission
    Haberle, R. M.
    Gomez-Elvira, J.
    Juarez, M. de la Torre
    Harri, A-M
    Hollingsworth, J. L.
    Kahanpaa, H.
    Kahre, M. A.
    Lemmon, M.
    Martin-Torres, F. J.
    Mischna, M.
    Moores, J. E.
    Newman, C.
    Rafkin, S. C. R.
    Renno, N.
    Richardson, M. I.
    Rodriguez-Manfredi, J. A.
    Vasavada, A. R.
    Zorzano-Mier, M-P
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2014, 119 (03) : 440 - 453
  • [45] Pressure observations by the Curiosity rover: Initial results
    Harri, A. -M.
    Genzer, M.
    Kemppinen, O.
    Kahanpaa, H.
    Gomez-Elvira, J.
    Rodriguez-Manfredi, J. A.
    Haberle, R.
    Polkko, J.
    Schmidt, W.
    Savijarvi, H.
    Kauhanen, J.
    Atlaskin, E.
    Richardson, M.
    Siili, T.
    Paton, M.
    Juarez, M. de laTorre
    Newman, C.
    Rafkin, S.
    Lemmon, M. T.
    Mischna, M.
    Merikallio, S.
    Haukka, H.
    Martin-Torres, J.
    Zorzano, M. -P.
    Peinado, V.
    Urqui, R.
    Lapinette, A.
    Scodary, A.
    Makinen, T.
    Vazquez, L.
    Renno, N.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2014, 119 (01) : 82 - 92
  • [46] The depth of the convective boundary layer on Mars
    Hinson, D. P.
    Paetzold, M.
    Tellmann, S.
    Haeusler, B.
    Tyler, G. L.
    [J]. ICARUS, 2008, 198 (01) : 57 - 66
  • [47] Winds at the Phoenix landing site
    Holstein-Rathlou, C.
    Gunnlaugsson, H. P.
    Merrison, J. P.
    Bean, K. M.
    Cantor, B. A.
    Davis, J. A.
    Davy, R.
    Drake, N. B.
    Ellehoj, M. D.
    Goetz, W.
    Hviid, S. F.
    Lange, C. F.
    Larsen, S. E.
    Lemmon, M. T.
    Madsen, M. B.
    Malin, M.
    Moores, J. E.
    Nornberg, P.
    Smith, P.
    Tamppari, L. K.
    Taylor, P. A.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2010, 115
  • [48] Dust deposition on the Mars Exploration Rover Panoramic Camera (Pancam) calibration targets
    Kinch, Kjartan M.
    Sohl-Dickstein, Jascha
    Bell, James F., III
    Johnson, Jeffrey R.
    Goetz, Walter
    Landis, Geoffrey A.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2007, 112 (E6)
  • [49] Statistical distribution of atmospheric dust devils
    Kurgansky, M. V.
    [J]. ICARUS, 2012, 219 (02) : 556 - 560
  • [50] Measurement of the settling rate of atmospheric dust on Mars by the MAE instrument on Mars Pathfinder
    Landis, GA
    Jenkins, PP
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2000, 105 (E1) : 1855 - 1857