Diffusion radiomics as a diagnostic model for atypical manifestation of primary central nervous system lymphoma: development and multicenter external validation

被引:116
作者
Kang, Daesung [1 ,2 ]
Park, Ji Eun [1 ,2 ]
Kim, Young-Hoon [3 ]
Kim, Jeong Hoon [3 ]
Oh, Joo Young [1 ,2 ]
Kim, Jungyoun [1 ,2 ]
Kim, Yikyung [4 ]
Kim, Sung Tae [4 ]
Kim, Ho Sung [1 ,2 ]
机构
[1] Univ Ulsan, Coll Med, Asan Med Ctr, Dept Radiol, 43 Olymp Ro 88, Seoul 05505, South Korea
[2] Univ Ulsan, Coll Med, Asan Med Ctr, Res Inst Radiol, 43 Olymp Ro 88, Seoul 05505, South Korea
[3] Univ Ulsan, Coll Med, Asan Med Ctr, Dept Neurosurg, Seoul, South Korea
[4] Sungkyunkwan Univ, Sch Med, Samsung Med Ctr, Dept Radiol, Seoul, South Korea
关键词
atypical; diffusion-weighted imaging; magnetic resonance imaging; radiomics; primary central nervous system lymphoma; IMAGING PREDICTOR; TUMOR PHENOTYPE; GLIOBLASTOMA; FEATURES; MRI; HETEROGENEITY; PERFORMANCE; SURVIVAL; UTILITY;
D O I
10.1093/neuonc/noy021
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background. Radiomics is a rapidly growing field in neuro-oncology, but studies have been limited to conventional MRI, and external validation is critically lacking. We evaluated technical feasibility, diagnostic performance, and generalizability of a diffusion radiomics model for identifying atypical primary central nervous system lymphoma (PCNSL) mimicking glioblastoma. Methods. A total of 1618 radiomics features were extracted from diffusion and conventional MRI from 112 patients (training set, 70 glioblastomas and 42 PCNSLs). Feature selection and classification were optimized using a machine-learning algorithm. The diagnostic performance was tested in 42 patients of internal and external validation sets. The performance was compared with that of human readers (2 neuroimaging experts), cerebral blood volume (90% histogram cutoff, CBV90), and apparent diffusion coefficient (10% histogram, ADC10) using the area under the receiver operating characteristic curve (AUC). Results. The diffusion radiomics was optimized with the combination of recursive feature elimination and a random forest classifier (AUC 0.983, stability 2.52%). In internal validation, the diffusion model (AUC 0.984) showed similar performance with conventional (AUC 0.968) or combined diffusion and conventional radiomics (AUC 0.984) and better than human readers (AUC 0.825-0.908), CBV90 (AUC 0.905), or ADC10 (AUC 0.787) in atypical PCNSL diagnosis. In external validation, the diffusion radiomics showed robustness (AUC 0.944) and performed better than conventional radiomics (AUC 0.819) and similar to combined radiomics (AUC 0.946) or human readers (AUC 0.896-0.930). Conclusion. The diffusion radiomics model had good generalizability and yielded a better diagnostic performance than conventional radiomics or single advanced MRI in identifying atypical PCNSL mimicking glioblastoma.
引用
收藏
页码:1251 / 1261
页数:11
相关论文
共 38 条
[1]   Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach [J].
Aerts, Hugo J. W. L. ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Parmar, Chintan ;
Grossmann, Patrick ;
Cavalho, Sara ;
Bussink, Johan ;
Monshouwer, Rene ;
Haibe-Kains, Benjamin ;
Rietveld, Derek ;
Hoebers, Frank ;
Rietbergen, Michelle M. ;
Leemans, C. Rene ;
Dekker, Andre ;
Quackenbush, John ;
Gillies, Robert J. ;
Lambin, Philippe .
NATURE COMMUNICATIONS, 2014, 5
[2]  
[Anonymous], 1998, TEXTURE ANAL METHODS
[3]   A reproducible evaluation of ANTs similarity metric performance in brain image registration [J].
Avants, Brian B. ;
Tustison, Nicholas J. ;
Song, Gang ;
Cook, Philip A. ;
Klein, Arno ;
Gee, James C. .
NEUROIMAGE, 2011, 54 (03) :2033-2044
[4]   Diffusion-Weighted MR Imaging Derived Apparent Diffusion Coefficient Is Predictive of Clinical Outcome in Primary Central Nervous System Lymphoma [J].
Barajas, R. F., Jr. ;
Rubenstein, J. L. ;
Chang, J. S. ;
Hwang, J. ;
Cha, S. .
AMERICAN JOURNAL OF NEURORADIOLOGY, 2010, 31 (01) :60-66
[5]  
Bhagavathi S, 2008, ARCH PATHOL LAB MED, V132, P1830, DOI 10.1043/1543-2165-132.11.1830
[6]   Recurrent Glioblastoma: Optimum Area under the Curve Method Derived from Dynamic Contrast-enhanced T1-weighted Perfusion MR Imaging [J].
Chung, Won Jung ;
Kim, Ho Sung ;
Kim, Namkug ;
Choi, Choong Gon ;
Kim, Sang Joon .
RADIOLOGY, 2013, 269 (02) :560-567
[7]   Influence of MRI acquisition protocols and image intensity normalization methods on texture classification [J].
Collewet, G ;
Strzelecki, M ;
Mariette, F .
MAGNETIC RESONANCE IMAGING, 2004, 22 (01) :81-91
[8]   Collinearity: a review of methods to deal with it and a simulation study evaluating their performance [J].
Dormann, Carsten F. ;
Elith, Jane ;
Bacher, Sven ;
Buchmann, Carsten ;
Carl, Gudrun ;
Carre, Gabriel ;
Garcia Marquez, Jaime R. ;
Gruber, Bernd ;
Lafourcade, Bruno ;
Leitao, Pedro J. ;
Muenkemueller, Tamara ;
McClean, Colin ;
Osborne, Patrick E. ;
Reineking, Bjoern ;
Schroeder, Boris ;
Skidmore, Andrew K. ;
Zurell, Damaris ;
Lautenbach, Sven .
ECOGRAPHY, 2013, 36 (01) :27-46
[9]  
Duangsoithong R, 2009, ADV PATT REC 2009 IC
[10]   Removing inter-subject technical variability in magnetic resonance imaging studies [J].
Fortin, Jean-Philippe ;
Sweeney, Elizabeth M. ;
Muschelli, John ;
Crainiceanu, Ciprian M. ;
Shinohara, Russell T. .
NEUROIMAGE, 2016, 132 :198-212