Modified constriction particle swarm optimization algorithm

被引:2
作者
Zhang, Zhe [1 ,2 ]
Jia, Limin [2 ,3 ]
Qin, Yong [2 ,3 ]
机构
[1] Beijing Jiaotong Univ, Traff & Transportat Sch, Beijing 100044, Peoples R China
[2] Beijing Jiaotong Univ, State Key Lab Rail Traff Control & Safety, Beijing 100044, Peoples R China
[3] Beijing Jiaotong Univ, Beijing Res Ctr Urban Traff Informat Sensing & Se, Beijing 100044, Peoples R China
基金
中国国家自然科学基金;
关键词
particle swarm optimization; random speed operator; convergence; global optima; CONVERGENCE ANALYSIS; MULTIAGENT SYSTEMS; CONSENSUS; OPTIMA;
D O I
10.1109/JSEE.2015.00120
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
To deal with the demerits of constriction particle swarm optimization (CPSO), such as relapsing into local optima, slow convergence velocity, a modified CPSO algorithm is proposed by improving the velocity update formula of CPSO. The random velocity operator from local optima to global optima is added into the velocity update formula of CPSO to accelerate the convergence speed of the particles to the global optima and reduce the likelihood of being trapped into local optima. Finally the convergence of the algorithm is verified by calculation examples.
引用
收藏
页码:1107 / 1113
页数:7
相关论文
共 35 条
[21]   Competitive and cooperative particle swarm optimization with information sharing mechanism for global optimization problems [J].
Li, Yuhua ;
Zhan, Zhi-Hui ;
Lin, Shujin ;
Zhang, Jun ;
Luo, Xiaonan .
INFORMATION SCIENCES, 2015, 293 :370-382
[22]   Center particle swarm optimization [J].
Liu, Yu ;
Qin, Zheng ;
Shi, Zhewen ;
Lu, Jiang .
NEUROCOMPUTING, 2007, 70 (4-6) :672-679
[23]   A hybrid particle swarm optimization for distribution state estimation [J].
Naka, S ;
Genji, T ;
Yura, T ;
Fukuyama, Y .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2003, 18 (01) :60-68
[24]   A novel particle swarm optimization algorithm with adaptive inertia weight [J].
Nickabadi, Ahmad ;
Ebadzadeh, Mohammad Mehdi ;
Safabakhsh, Reza .
APPLIED SOFT COMPUTING, 2011, 11 (04) :3658-3670
[25]   A new particle swarm optimization with quadratic interpolation [J].
Pant, Millie ;
Radha, T. ;
Singh, V. P. .
ICCIMA 2007: INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND MULTIMEDIA APPLICATIONS, VOL I, PROCEEDINGS, 2007, :55-60
[26]   Locating and tracking multiple dynamic optima by a particle swarm model using speciation [J].
Parrott, Daniel ;
Li, Xiaodong .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2006, 10 (04) :440-458
[27]  
Shi Y., 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), P1945, DOI 10.1109/CEC.1999.785511
[28]   A modified particle swarm optimizer [J].
Shi, YH ;
Eberhart, R .
1998 IEEE INTERNATIONAL CONFERENCE ON EVOLUTIONARY COMPUTATION - PROCEEDINGS, 1998, :69-73
[29]   The particle swarm optimization algorithm: convergence analysis and parameter selection [J].
Trelea, IC .
INFORMATION PROCESSING LETTERS, 2003, 85 (06) :317-325
[30]   A study of particle swarm optimization particle trajectories [J].
van den Bergh, F ;
Engelbrecht, AP .
INFORMATION SCIENCES, 2006, 176 (08) :937-971