Optimal L∞-error estimate for variational inequalities with nonlinear source terms

被引:8
作者
Boulbrachene, M [1 ]
机构
[1] Sultan Qaboos Univ, Dept Math, Coll Sci, Muscat 123, Oman
关键词
variational inequalities; nonlinear source term; finite element; L-infinity-stability; L-infinity-error estimate;
D O I
10.1016/S0893-9659(02)00078-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish optimal L-infinity-error estimate for a class of variational inequalities (VIs) with nonlinear source term, using a very simple argument mainly based on the discrete L-infinity-stability property with respect to the right-hand side in elliptic VIs. We also show that the same approach extends to the corresponding noncoercive problems and optimal uniform convergence order is obtained as well. (C) 2002 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1013 / 1017
页数:5
相关论文
共 50 条
[21]   On a generalization of nonlinear pseudoparabolic variational inequalities [J].
A. A. Petrosyan ;
G. S. Hakobyan .
Journal of Contemporary Mathematical Analysis, 2008, 43 :118-125
[22]   A posteriori error estimators for a class of variational inequalities [J].
Liu W. ;
Yan N. .
Journal of Scientific Computing, 2000, 15 (3) :361-393
[23]   Two-level Schwarz method for solving variational inequality with nonlinear source terms [J].
Li, Chen-Liang ;
Zeng, Jin-ping .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 211 (01) :67-75
[24]   On Parabolic Variational Inequalities with Multivalued Terms and Convex Functionals [J].
Vy Khoi Le ;
Schmitt, Klaus .
ADVANCED NONLINEAR STUDIES, 2018, 18 (02) :269-287
[25]   Optimal control of the obstacle in semilinear variational inequalities [J].
Maïtine Bergouniou ;
Suzanne Lenhart .
Positivity, 2004, 8 :229-242
[26]   Optimal control of the obstacle in semilinear variational inequalities [J].
Bergounioux, M ;
Lenhart, S .
POSITIVITY, 2004, 8 (03) :229-242
[27]   Optimal solutions to variational inequalities on Banach lattices [J].
Li, Jinlu ;
Ok, Efe A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 388 (02) :1157-1165
[28]   Regularity for nonlinear variational inequalities of hyperbolic type [J].
Jeong, Jin-Mun ;
Ju, Eun-Young ;
Cheon, Su-Jin .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (11) :4230-4237
[30]   Coupled systems of nonlinear variational inequalities and applications? [J].
Costea, Nicusor .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 118