Modulus inequalities for mappings with weighted bounded (p, q)-distortion

被引:5
作者
Tryamkin, M. V. [1 ,2 ]
机构
[1] Sobolev Inst Math, Novosibirsk, Russia
[2] Novosibirsk State Univ, Novosibirsk 630090, Russia
基金
俄罗斯基础研究基金会;
关键词
mapping with weighted bounded (p; q)-distortion; Poletskii function; modulus of a family of curves; SOBOLEV MAPPINGS; REGULARITY; POLETSKII; CAPACITY; INVERSE;
D O I
10.1134/S0037446615060166
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain some analogs of the PoletskiA and Vaisala inequalities for mappings with (theta, 1)- weighted bounded (p, q)-distortion without the additional assumption of Luzin's N-property.
引用
收藏
页码:1114 / 1132
页数:19
相关论文
共 30 条
[1]  
Ahlfors L., 1964, ACTA MATH, V83, P101
[2]  
[Anonymous], 1989, Space Mappings of Bounded Distortion, Translations of Mathematical Monographs
[3]  
[Anonymous], DOKL AKAD NAUK
[4]  
[Anonymous], 2004, Siberian Adv. Math.
[5]  
[Anonymous], 1951, Pacific J. Math
[6]  
[Anonymous], 1993, QUASIREGULAR MAPPING
[7]  
[Anonymous], 1955, Continuous Transformations in Analysis
[8]   Capacity estimates, Liouville's theorem, and singularity removal for mappings with bounded (p, q)-distortion [J].
Baykin, A. N. ;
Vodop'yanov, S. K. .
SIBERIAN MATHEMATICAL JOURNAL, 2015, 56 (02) :237-261
[9]  
Evans LC., 2018, Measure Theory and Fine Properties of Functions
[10]  
Federer H., 1969, Geometric Measure Theory. Classics in Mathematics