Lower semicontinuity of quasi-convex functionals with non-standard growth

被引:0
作者
Focardi, M
Mascolo, E
机构
[1] Scuola Normale Super Pisa, I-56126 Pisa, Italy
[2] U DINI, Dipartimento Matemat, I-50134 Florence, Italy
关键词
quasi-convexity; lower semicontinuity; Orlicz-Sobolev spaces;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the lower semicontinuity properties of autonomous variational integrals whose energy densities are controlled by N-functions.
引用
收藏
页码:327 / 348
页数:22
相关论文
共 41 条
[1]   NEW LOWER SEMICONTINUITY RESULTS FOR POLYCONVEX INTEGRALS [J].
ACERBI, E ;
DALMASO, G .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1994, 2 (03) :329-372
[2]   SEMICONTINUITY PROBLEMS IN THE CALCULUS OF VARIATIONS [J].
ACERBI, E ;
FUSCO, N .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1984, 86 (02) :125-145
[3]  
Adams A, 2003, SOBOLEV SPACES
[4]  
[Anonymous], 1997, REND I MAT U TRIESTE
[5]  
BALL JM, 1977, ARCH RATION MECH AN, V63, P337, DOI 10.1007/BF00279992
[6]   A NEW POINCARE INEQUALITY AND ITS APPLICATION TO THE REGULARITY OF MINIMIZERS OF INTEGRAL FUNCTIONALS WITH NONSTANDARD GROWTH [J].
BHATTACHARYA, T ;
LEONETTI, F .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1991, 17 (09) :833-839
[7]   FURTHER REMARKS ON THE LOWER SEMICONTINUITY OF POLYCONVEX INTEGRALS [J].
CELADA, P ;
DALMASO, G .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1994, 11 (06) :661-691
[8]  
DACOROGNA B, 1990, CR ACAD SCI I-MATH, V311, P393
[9]  
DACOROGNA B, 1989, APPL MATH SCI, V78
[10]  
Dall'Aglio A., 1998, REND MAT APPL 7, V18, P305