On the Number of Eigenvalues of the Lattice Model Operator in One-Dimensional Case

被引:9
|
作者
Bozorov, I. N. [1 ]
Khurramov, A. M. [1 ]
机构
[1] Samarkand State Univ, Samarkand 140104, Uzbekistan
关键词
two-body Hamiltonian; Schrodinger operators; Fridrix's model; eigen-value; essential spectrum; asymptotics of the Fredholm determinant; SPECTRAL PROPERTIES; THRESHOLD ANALYSIS; 2-PARTICLE;
D O I
10.1134/S1995080222050109
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is considered a model operator h(mu) (k), k is an element of T (-pi, pi], corresponding to the Hamiltonian of systems of two arbitrary quantum particles on a one-dimensional lattice with a special dispersion function that describes the transfer of a particle from one site to another interacting by a some short-range attraction potential v(mu), mu = (mu(0), mu(1), mu(2), mu(3)) is an element of R-+(4). The number of eigenvalues of the operator h(mu) (k), k is an element of T depending on the energy of the particle interaction vector mu is an element of R-+(4) and the total quasi-momentum k is an element of T is studied.
引用
收藏
页码:353 / 365
页数:13
相关论文
共 50 条
  • [41] One-dimensional Kondo lattice model at quarter filling
    Xavier, J. C.
    Miranda, E.
    PHYSICAL REVIEW B, 2008, 78 (14)
  • [42] Ferromagnetic state in the one-dimensional Kondo lattice model
    Peters, Robert
    Kawakami, Norio
    PHYSICAL REVIEW B, 2012, 86 (16)
  • [43] Periodic ordering of clusters in a one-dimensional lattice model
    Pekalski, J.
    Ciach, A.
    Almarza, N. G.
    JOURNAL OF CHEMICAL PHYSICS, 2013, 138 (14):
  • [44] Disorder effects in the one-dimensional Anderson lattice model
    Chen, F
    Kioussis, N
    JOURNAL OF APPLIED PHYSICS, 1999, 85 (08) : 5330 - 5331
  • [45] Magnetic ordering in the one-dimensional Kondo lattice model
    Honner, G
    Gulacsi, M
    PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES, 1997, 76 (05): : 849 - 853
  • [46] Friedel oscillations in the one-dimensional Kondo lattice model
    Shibata, N
    Ueda, K
    Nishino, T
    Ishii, C
    PHYSICAL REVIEW B, 1996, 54 (19) : 13495 - 13498
  • [47] Integrable one-dimensional heavy fermion lattice model
    Schlottmann, P
    NUCLEAR PHYSICS B, 1998, 525 (03) : 697 - 720
  • [48] Exactly solvable model of a one-dimensional Kondo lattice
    Karnaukhov, I. N.
    Physical Review B: Condensed Matter, 56 (08):
  • [49] A dislocation-dipole in one-dimensional lattice model
    Sharma, Basant Lal
    PHILOSOPHICAL MAGAZINE, 2021, 101 (20) : 2216 - 2259
  • [50] Exactly solvable model of a one-dimensional Kondo lattice
    Karnaukhov, IN
    PHYSICAL REVIEW B, 1997, 56 (08) : R4313 - R4316