On the Number of Eigenvalues of the Lattice Model Operator in One-Dimensional Case

被引:9
|
作者
Bozorov, I. N. [1 ]
Khurramov, A. M. [1 ]
机构
[1] Samarkand State Univ, Samarkand 140104, Uzbekistan
关键词
two-body Hamiltonian; Schrodinger operators; Fridrix's model; eigen-value; essential spectrum; asymptotics of the Fredholm determinant; SPECTRAL PROPERTIES; THRESHOLD ANALYSIS; 2-PARTICLE;
D O I
10.1134/S1995080222050109
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is considered a model operator h(mu) (k), k is an element of T (-pi, pi], corresponding to the Hamiltonian of systems of two arbitrary quantum particles on a one-dimensional lattice with a special dispersion function that describes the transfer of a particle from one site to another interacting by a some short-range attraction potential v(mu), mu = (mu(0), mu(1), mu(2), mu(3)) is an element of R-+(4). The number of eigenvalues of the operator h(mu) (k), k is an element of T depending on the energy of the particle interaction vector mu is an element of R-+(4) and the total quasi-momentum k is an element of T is studied.
引用
收藏
页码:353 / 365
页数:13
相关论文
共 50 条
  • [21] Ladder operator for the one-dimensional Hubbard model
    Links, J
    Zhou, HQ
    McKenzie, RH
    Gould, MD
    PHYSICAL REVIEW LETTERS, 2001, 86 (22) : 5096 - 5099
  • [22] The Number of Eigenvalues of the Three-Particle Schrödinger Operator on Three Dimensional Lattice
    A. M. Khalkhuzhaev
    J. I. Abdullaev
    J. Kh. Boymurodov
    Lobachevskii Journal of Mathematics, 2022, 43 : 3486 - 3495
  • [23] Asymptotic behavior of the eigenvalues of the one-dimensional weighted p-Laplace operator
    Bonder, JF
    Pinasco, JP
    ARKIV FOR MATEMATIK, 2003, 41 (02): : 267 - 280
  • [24] On the Number and Locations of Eigenvalues of the Discrete Schrodinger Operator on a Lattice
    Akhmadova, M. O.
    Alladustova, I. U.
    Lakaev, S. N.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2023, 44 (03) : 1091 - 1099
  • [25] Mixed impurities model of the one-dimensional lattice
    Fan, Hongyi
    Xu, Zhihua
    Wuli Xuebao/Acta Physica Sinica, 1994, 43 (02): : 253 - 257
  • [26] Ferromagnetism in the one-dimensional Kondo lattice model
    Honner, G
    Gulacsi, M
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1998, 184 (03) : 307 - 312
  • [27] One-dimensional heavy fermion lattice model
    Zvyagin, A.A.
    Schlottmann, P.
    Journal of Applied Physics, 1999, 85 (8 pt 2B):
  • [28] Continuum model of a one-dimensional lattice of metamaterials
    Yahong Zhou
    Peijun Wei
    Qiheng Tang
    Acta Mechanica, 2016, 227 : 2361 - 2376
  • [29] LATTICE ABSORPTION IN DIAMOND - A ONE-DIMENSIONAL MODEL
    LAX, M
    BURSTEIN, E
    PHYSICAL REVIEW, 1953, 91 (02): : 492 - 492
  • [30] Continuum model of a one-dimensional lattice of metamaterials
    Zhou, Yahong
    Wei, Peijun
    Tang, Qiheng
    ACTA MECHANICA, 2016, 227 (08) : 2361 - 2376