On the Number of Eigenvalues of the Lattice Model Operator in One-Dimensional Case

被引:12
作者
Bozorov, I. N. [1 ]
Khurramov, A. M. [1 ]
机构
[1] Samarkand State Univ, Samarkand 140104, Uzbekistan
关键词
two-body Hamiltonian; Schrodinger operators; Fridrix's model; eigen-value; essential spectrum; asymptotics of the Fredholm determinant; SPECTRAL PROPERTIES; THRESHOLD ANALYSIS; 2-PARTICLE;
D O I
10.1134/S1995080222050109
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is considered a model operator h(mu) (k), k is an element of T (-pi, pi], corresponding to the Hamiltonian of systems of two arbitrary quantum particles on a one-dimensional lattice with a special dispersion function that describes the transfer of a particle from one site to another interacting by a some short-range attraction potential v(mu), mu = (mu(0), mu(1), mu(2), mu(3)) is an element of R-+(4). The number of eigenvalues of the operator h(mu) (k), k is an element of T depending on the energy of the particle interaction vector mu is an element of R-+(4) and the total quasi-momentum k is an element of T is studied.
引用
收藏
页码:353 / 365
页数:13
相关论文
共 16 条
[1]   The threshold effects for the two-particle hamiltonians on lattices [J].
Albeverio, S ;
Lakaev, SN ;
Makarov, KA ;
Muminov, ZI .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 262 (01) :91-115
[2]  
[Anonymous], 1963, Trudy Matematicheskogo Instituta imeni VA Steklova
[3]  
Hiroshima F., 2020, LIN MULTILIN ALGEBRA, V68, P1, DOI [10.1080/03081087.2018.1497585, DOI 10.1080/03081087.2018.1497585]
[4]  
Khalkhuzhaev A. M., 2000, UZBEK MAT ZH, P3239
[5]   THE NUMBER OF BOUND STATES OF A ONE-PARTICLE HAMILTONIAN ON A THREE-DIMENSIONAL LATTICE [J].
Lakaev, S. N. ;
Bozorov, I. N. .
THEORETICAL AND MATHEMATICAL PHYSICS, 2009, 158 (03) :360-376
[6]   The number of eigenvalues of the two-particle discrete Schrodinger operator [J].
Lakaev, S. N. ;
Khalkhuzhaev, A. M. .
THEORETICAL AND MATHEMATICAL PHYSICS, 2009, 158 (02) :221-232
[7]  
Lakaev S. N., 2007, UZBEK MAT ZH, P7080
[8]   The existence of bound states in a system of three particles in an optical lattice [J].
Lakaev, Saidakhmat N. ;
Lakaev, Shukhrat S. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (33)
[9]   ON EFIMOV EFFECT IN A SYSTEM OF 3 IDENTICAL QUANTUM PARTICLES [J].
LAKAEV, SN .
FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1993, 27 (03) :166-175
[10]   Positivity of the two-particle Hamiltonian on a lattice [J].
Muminov, M. E. .
THEORETICAL AND MATHEMATICAL PHYSICS, 2007, 153 (03) :1671-1676