The Martin boundary of the Young-Fibonacci lattice

被引:5
作者
Goodman, FM
Kerov, SV
机构
[1] Univ Iowa, Dept Math, Iowa City, IA 52242 USA
[2] VA Steklov Math Inst, St Petersburg 191011, Russia
关键词
differential poset; harmonic function; Martin boundary; Okada algebra; non-commutative symmetric function;
D O I
10.1023/A:1008739619211
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we find the Martin boundary for the Young-Fibonacci lattice YF. Along with the lattice of Young diagrams, this is the most interesting example of a differential partially ordered set. The Martin boundary construction provides an explicit Poisson-type integral representation of non-negative harmonic functions on YF. The latter are in a canonical correspondence with a set of traces on the locally semisimple Okada algebra. The set is known to contain all the indecomposable traces. Presumably, all of the traces in the set are indecomposable, though we have no proof of this conjecture. Using an explicit product formula for Okada characters, we derive precise regularity conditions under which a sequence of characters of finite-dimensional Okada algebras converges.
引用
收藏
页码:17 / 48
页数:32
相关论文
共 14 条
[1]  
DOOB JL, 1959, J MATH MECH, V8, P433
[2]  
Effros E. G., 1981, CBMS REGIONAL C SERI, V46
[3]   SCHENSTED ALGORITHMS FOR DUAL GRADED GRAPHS [J].
FOMIN, S .
JOURNAL OF ALGEBRAIC COMBINATORICS, 1995, 4 (01) :5-45
[4]  
FOMIN S. V., 1988, ZAP NAUCHN SEM LENIN, V41, P979
[5]  
KEROV S, RIMS1174 KYOT U
[6]  
KEROV S, 1990, ADV STUD CONT MATH, V7, P36
[7]  
MACDONALD IG, 1995, SYMMETRIC FUNCTIONS
[9]  
OKOUNKOV A, 1994, FUNCT ANAL APPL, V28, P101
[10]  
Stanley R., 1988, J. Amer. Math. Sc., V1, P919, DOI DOI 10.2307/1990995