Modeling Agglomeration Behavior in High Temperature Gas-Solid Fluidized Beds via Monte Carlo Method

被引:4
|
作者
Shi, Qjang
Huang, Zhengliang
Lungu, Musango
Liao, Zuwei
Wang, Jingdai [1 ]
Yang, Yongrong
机构
[1] Zhejiang Univ, State Key Lab Chem Engn, Hangzhou 310027, Zhejiang, Peoples R China
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
MELT GRANULATION; SIMULATION; PARTICLES; KINETICS; BUBBLE; PREDICTION; REACTORS; FORCES;
D O I
10.1021/acs.iecr.6b04893
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Particles and bubbles are important discrete elements in gas solid fluidized beds. The interactions between them affect the evolution of agglomerates. Based on the analyses of microscopic physical processes, mathematical models of particle coalescence and agglomerate breakage caused by bubble expansion were developed. Coupling with the constant-number Monte Carlo method, the evolution of particle size distribution was simulated. Modeling results matched well with cold-mode experiment results, which demonstrated that the approach is a promising way to predict agglomeration behavior in the fluidized beds. Also, the coalescence efficiency beta(0) and breakage efficiency beta(b) extracted from Monte Carlo results can provide rate constants for the kernels in population balance modeling. Further investigations of the effects of process parameters show that decreasing bed temperature or increasing superficial gas velocity reduces the coalescence efficiency and increases the breakage efficiency, which are beneficial to prevent agglomeration.
引用
收藏
页码:1112 / 1121
页数:10
相关论文
共 50 条
  • [31] Critical comparison of hydrodynamic models for gas-solid fluidized beds - Part I: bubbling gas-solid fluidized beds operated with a jet
    Patil, DJ
    Annaland, MV
    Kuipers, JAM
    CHEMICAL ENGINEERING SCIENCE, 2005, 60 (01) : 57 - 72
  • [32] Validation of Eulerian Modeling Of Gas-Solid Fluidized Beds Using Nonlinear Analysis
    Norouzi, Y.
    Norouzi, H. R.
    Zarghami, R.
    4TH INTERNATIONAL CONGRESS IN ADVANCES IN APPLIED PHYSICS AND MATERIALS SCIENCE (APMAS 2014), 2015, 1653
  • [33] Modeling bubble heat transfer in gas-solid fluidized beds using DEM
    Patil, Amit V.
    Peters, E. A. J. F.
    Kolkman, T.
    Kuipers, J. A. M.
    CHEMICAL ENGINEERING SCIENCE, 2014, 105 : 121 - 131
  • [34] Numerical simulation of dense gas-solid fluidized beds: A multiscale modeling strategy
    van der Hoef, M. A.
    Annaland, M. van Sint
    Deen, N. G.
    Kuipers, J. A. M.
    ANNUAL REVIEW OF FLUID MECHANICS, 2008, 40 : 47 - 70
  • [35] Numerical simulation of flow behavior of gas-solid flow in turbulent fluidized beds
    Shen, Zhi-Heng
    Sun, Qiao-Qun
    Liu, Guo-Dong
    Lu, Hui-Lin
    Ding, Yu-Long
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2007, 28 (06): : 968 - 970
  • [36] BEHAVIOR OF BUBBLES IN GAS-SOLID FLUIDIZED-BEDS - INITIAL FORMATION OF BUBBLES
    CHIBA, T
    TERASHIMA, K
    KOBAYASHI, H
    CHEMICAL ENGINEERING SCIENCE, 1972, 27 (05) : 965 - +
  • [37] Effects of cluster behavior on gas-solid mass transfer in circulating fluidized beds
    Li, J
    Zhang, XP
    Zhu, J
    Li, JH
    FLUIDIZATION IX, 1998, : 405 - 412
  • [38] Tomographic diagnosis of gas maldistribution in gas-solid fluidized beds
    Patel, Ashutosh K.
    Waje, Sunil S.
    Thorat, Bhaskar N.
    Mujumdar, Arun S.
    POWDER TECHNOLOGY, 2008, 185 (03) : 239 - 250
  • [39] Numerical Investigation of Gas Mixing in Gas-Solid Fluidized Beds
    Li, Tingwen
    Zhang, Yongmin
    Grace, John R.
    Bi, Xiaotao
    AICHE JOURNAL, 2010, 56 (09) : 2280 - 2296
  • [40] PARTICLE DISCHARGE BY GAS-SOLID FLUIDIZED-BEDS
    GUDENAU, HW
    MEIMETH, S
    HAHN, W
    ERDOL & KOHLE ERDGAS PETROCHEMIE, 1993, 46 (12): : 450 - 454