A Graph Federated Architecture with Privacy Preserving Learning

被引:13
|
作者
Rizk, Elsa [1 ]
Sayed, Ali H. [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Sch Engn, CH-1015 Lausanne, Switzerland
来源
SPAWC 2021: 2021 IEEE 22ND INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS (IEEE SPAWC 2021) | 2020年
关键词
federated learning; distributed learning; differential privacy; secure aggregation; network;
D O I
10.1109/SPAWC51858.2021.9593148
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Federated learning involves a central processor that interacts with multiple agents to determine a global model. The process consists of repeatedly exchanging estimates, which may end up divulging some private information from the local agents. This scheme can be inconvenient when dealing with sensitive data, and therefore, there is a need for the privatization of the algorithm. Furthermore, the current architecture of a server connected to multiple clients is highly sensitive to communication failures and computational overload at the server. In this work, we develop a private multi-server federated learning scheme, which we call graph federated learning. We use cryptographic and differential privacy concepts to privatize the federated learning algorithm over a graph structure. We further show under convexity and Lipschitz conditions, that the privatized process matches the performance of the non-private algorithm.
引用
收藏
页码:131 / 135
页数:5
相关论文
共 50 条
  • [41] FL-ODP: An Optimized Differential Privacy Enabled Privacy Preserving Federated Learning
    Iqbal, Maria
    Tariq, Asadullah
    Adnan, Muhammad
    Din, Irfan Ud
    Qayyum, Tariq
    IEEE ACCESS, 2023, 11 : 116674 - 116683
  • [42] Privacy-preserving Decentralized Federated Learning over Time-varying Communication Graph
    Lu, Yang
    Yu, Zhengxin
    Suri, Neeraj
    ACM TRANSACTIONS ON PRIVACY AND SECURITY, 2023, 26 (03)
  • [43] Privacy-preserving federated learning for residential short-term load forecasting
    Fernandez, Joaquin Delgado
    Potenciano, Sergio
    Lee, Chul Min
    Rieger, Alexander
    Fridgen, Gilbert
    APPLIED ENERGY, 2022, 326
  • [44] A Privacy-Preserving Subgraph-Level Federated Graph Neural Network via Differential Privacy
    Qiu, Yeqing
    Huang, Chenyu
    Wang, Jianzong
    Huang, Zhangcheng
    Xiao, Jing
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, KSEM 2022, PT III, 2022, 13370 : 165 - 177
  • [45] AN EXPLORATION OF FEDERATED LEARNING FOR PRIVACY-PRESERVING MACHINE LEARNING
    Kumar, K. Kiran
    Rao, Thalakola Syamsundara
    Vullam, Nagagopiraju
    Vellela, Sai Srinivas
    Jyosthna, B.
    Farjana, Shaik
    Javvadi, Sravanthi
    2024 5TH INTERNATIONAL CONFERENCE ON INNOVATIVE TRENDS IN INFORMATION TECHNOLOGY, ICITIIT 2024, 2024,
  • [46] VPPFL: Verifiable Privacy-Preserving Federated Learning in Cloud Environment
    Wang, Huiyong
    Yang, Tengfei
    Ding, Yong
    Tang, Shijie
    Wang, Yujue
    IEEE ACCESS, 2024, 12 : 151998 - 152008
  • [47] PFLF: Privacy-Preserving Federated Learning Framework for Edge Computing
    Zhou, Hao
    Yang, Geng
    Dai, Hua
    Liu, Guoxiu
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2022, 17 : 1905 - 1918
  • [48] Privacy-Preserving Robust Federated Learning with Distributed Differential Privacy
    Wang, Fayao
    He, Yuanyuan
    Guo, Yunchuan
    Li, Peizhi
    Wei, Xinyu
    2022 IEEE INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS, TRUSTCOM, 2022, : 598 - 605
  • [49] Privacy-Preserving Federated Learning with Differentially Private Hyperdimensional Computing
    Piran, Fardin Jalil
    Chen, Zhiling
    Imani, Mohsen
    Imani, Farhad
    COMPUTERS & ELECTRICAL ENGINEERING, 2025, 123
  • [50] ELXGB: An Efficient and Privacy-Preserving XGBoost for Vertical Federated Learning
    Xu, Wei
    Zhu, Hui
    Zheng, Yandong
    Wang, Fengwei
    Zhao, Jiaqi
    Liu, Zhe
    Li, Hui
    IEEE TRANSACTIONS ON SERVICES COMPUTING, 2024, 17 (03) : 878 - 892