Thermoelastic theory with microtemperatures and dissipative thermodynamics

被引:19
作者
Aouadi, Moncef [1 ]
Ciarletta, Michele [2 ]
Passarella, Francesca [3 ]
机构
[1] Univ Carthage, Ecole Natl Ingn Bizerte 17ES21, UR Syst Dynam & Applicat, Bizerte, Tunisia
[2] Univ Salerno, Dipartimento Ingn Ind, Fisciano, SA, Italy
[3] Univ Salerno, Dipartmento Matemat, Fisciano, SA, Italy
关键词
Asymptotic behavior; Green-Naghdi theory of type III; impossibility of localization; microtemperatures; thermoelasticity; well posedness; ENERGY-DISSIPATION; THERMOMECHANICS; UNIQUENESS; BODIES; FLUIDS; MICROSTRUCTURE; PROPAGATION; MEDIA;
D O I
10.1080/01495739.2017.1383219
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this article we derive a nonlinear theory of thermoelastic materials with microtemperatures based on the entropy balance of type III postulated by Green and Naghdi. The work is motivated by an increasing use of materials which possess thermal variation at a microstructure level such that both thermal and microtemperatures waves can propagate with finite speeds and energy dissipation. The equations of the linear theory are also obtained. Then, we use a semigroup approach to derive an existence and uniqueness result for the solutions to the anisotropic problem and to study the asymptotic behavior. Finally, we investigate the impossibility of the localization in time of solutions.
引用
收藏
页码:522 / 542
页数:21
相关论文
共 37 条
  • [1] [Anonymous], 2012, Microcontinuum field theories: I. Foundations and solidsM
  • [2] A porous thermoelastic diffusion theory of types II and III
    Aouadi, Moncef
    Ciarletta, Michele
    Iovane, Gerardo
    [J]. ACTA MECHANICA, 2017, 228 (03) : 931 - 949
  • [3] A thermoelastic diffusion theory with microtemperatures and microconcentrations
    Aouadi, Moncef
    Ciarletta, Michele
    Tibullo, Vincenzo
    [J]. JOURNAL OF THERMAL STRESSES, 2017, 40 (04) : 486 - 501
  • [4] A theory of thermoelasticity with diffusion under Green-Naghdi models
    Aouadi, Moncef
    Lazzari, Barbara
    Nibbi, Roberta
    [J]. ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2014, 94 (10): : 837 - 852
  • [5] Uniqueness and existence theorems in thermoelasticity with voids without energy dissipation
    Aouadi, Moncef
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2012, 349 (01): : 128 - 139
  • [6] THE HAMILTONIAN-STRUCTURE OF GENERAL RELATIVISTIC PERFECT FLUIDS
    BAO, D
    MARSDEN, J
    WALTON, R
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1985, 99 (03) : 319 - 345
  • [7] Theoretical and computational aspects of non-classical thermoelasticity
    Bargmann, S.
    Steinmann, P.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 196 (1-3) : 516 - 527
  • [8] Ciarlet P. G., 1988, 3 DIMENSIONAL ELASTI, VI
  • [9] Dafermos CM., 1976, APPL METHODS FUNCTIO, V503, P295, DOI [DOI 10.1007/BFB0088765, 10.1007/BFb0088765]
  • [10] GILBARG D., 2015, Elliptic Partial Differential Equations of Second Order