Novel method for convenient Seebeck coefficient measurements on individual Si nanowires

被引:2
作者
Hu, X. F. [1 ,2 ]
Li, S. J. [1 ,2 ]
Lin, D. D. [3 ]
Xiong, F. [4 ]
Jiang, Z. M. [1 ,2 ]
Yang, X. J. [1 ,2 ]
机构
[1] Fudan Univ, State Key Lab Surface Phys, Shanghai 200433, Peoples R China
[2] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China
[3] Ningbo Univ, Dept Microelect Sci & Engn, Fac Sci, Ningbo 315211, Peoples R China
[4] Yunnan Univ, Sch Mat Sci & Engn, Kunming 650091, Yunnan, Peoples R China
基金
上海市自然科学基金;
关键词
SILICON NANOWIRES; THERMAL-CONDUCTIVITY; THERMOELECTRIC-POWER; P-TYPE; BISMUTH TELLURIDE; TRANSPORT; PERFORMANCE;
D O I
10.1063/5.0024045
中图分类号
O59 [应用物理学];
学科分类号
摘要
A novel characterization method is introduced to measure Seebeck coefficients on individual Si nanowires (Si NWs). By using conductive atomic force microscopy with slight modifications, without any need of microfabricated devices, the Seebeck coefficients can be conveniently measured on individual Si NWs inside a large-sized vertical array in addition to the measurements on bulk substrates. The results show that the Seebeck coefficients of Si NWs are much larger than their bulk counterparts over a wide temperature range. The temperature dependence of the Seebeck coefficients of Si NWs is found to be entirely different from that of bulk Si, yet both of them agree well with the results obtained by a macroscopic method. Particularly, with this method, the Seebeck coefficients can be easily characterized on Si NWs with varied morphology, size, or doping. As an example, the Seebeck coefficients are measured on Si NWs with different lengths, and it is found that the Seebeck coefficients decrease obviously as the nanowire length increases for all measurement temperatures but the difference becomes smaller at higher temperatures. Overall, this study provides a simple but effective novel method to measure the Seebeck coefficients on individual Si NWs, which has unique advantages on exploring the size or other parameter dependence or revealing the dominant factors in thermoelectric property studies on single nanostructures.
引用
收藏
页数:9
相关论文
共 53 条
  • [1] Nanowire-based thermoelectrics
    Ali, Azhar
    Chen, Yixi
    Vasiraju, Venkata
    Vaddiraju, Sreeram
    [J]. NANOTECHNOLOGY, 2017, 28 (28)
  • [2] Conductive-probe atomic force microscopy characterization of silicon nanowire
    Alvarez, Jose
    Ngo, Irene
    Gueunier-Farret, Marie-Estelle
    Kleider, Jean-Paul
    Yu, Linwei
    Cabarrocas, Pere Rocai
    Perraud, Simon
    Rouviere, Emmanuelle
    Celle, Caroline
    Mouchet, Celine
    Simonato, Jean-Pierre
    [J]. NANOSCALE RESEARCH LETTERS, 2011, 6
  • [3] Cooling, heating, generating power, and recovering waste heat with thermoelectric systems
    Bell, Lon E.
    [J]. SCIENCE, 2008, 321 (5895) : 1457 - 1461
  • [4] Enhanced Seebeck coefficient in silicon nanowires containing dislocations
    Bennett, Nick S.
    Byrne, Daragh
    Cowley, Aidan
    [J]. APPLIED PHYSICS LETTERS, 2015, 107 (01)
  • [5] Silicon nanowires as efficient thermoelectric materials
    Boukai, Akram I.
    Bunimovich, Yuri
    Tahir-Kheli, Jamil
    Yu, Jen-Kan
    Goddard, William A., III
    Heath, James R.
    [J]. NATURE, 2008, 451 (7175) : 168 - 171
  • [6] Nanostructured Bulk Silicon as an Effective Thermoelectric Material
    Bux, Sabah K.
    Blair, Richard G.
    Gogna, Pawan K.
    Lee, Hohyun
    Chen, Gang
    Dresselhaus, Mildred S.
    Kaner, Richard B.
    Fleurial, Jean-Pierre
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2009, 19 (15) : 2445 - 2452
  • [7] Thermoelectric nanowires: A brief prospective
    Caballero-Calero, Olga
    Martin-Gonzalez, Marisol
    [J]. SCRIPTA MATERIALIA, 2016, 111 : 54 - 57
  • [8] Remarkable Reduction of Thermal Conductivity in Silicon Nanotubes
    Chen, Jie
    Zhang, Gang
    Li, Baowen
    [J]. NANO LETTERS, 2010, 10 (10) : 3978 - 3983
  • [9] Flexible Thermoelectric Generators Composed of n-and p-Type Silicon Nanowires Fabricated by Top-Down Method
    Choi, Jinyong
    Cho, Kyoungah
    Kim, Sangsig
    [J]. ADVANCED ENERGY MATERIALS, 2017, 7 (07)
  • [10] Length-dependent thermoelectric characteristics of silicon nanowires on plastics in a relatively low temperature regime in ambient air
    Choi, Jinyong
    Cho, Kyoungah
    Kim, Sangsig
    [J]. NANOTECHNOLOGY, 2013, 24 (45)