Frontal electroencephalogram based drug, sex, and age independent sedation level prediction using non-linear machine learning algorithms

被引:3
作者
Ramaswamy, S. M. [1 ]
Kuizenga, M. H. [1 ]
Weerink, M. A. S. [1 ]
Vereecke, H. E. M. [1 ,3 ]
Struys, M. M. R. F. [1 ,4 ]
Belur Nagaraj, S. [2 ]
机构
[1] Univ Groningen, Univ Med Ctr Groningen, Dept Anaesthesiol, Groningen, Netherlands
[2] Univ Groningen, Univ Med Ctr Groningen, Dept Clin Pharm & Pharmacol, Groningen, Netherlands
[3] AZ St Jan Brugge Oostende AV, Dept Anaesthesiol & Reanimat, Brugge, Belgium
[4] Univ Ghent, Dept Basic & Appl Med Sci, Ghent, Belgium
关键词
Anaesthesia; Electroencephalogram; Medical informatics; Consciousness Monitors; Machine learning; ANESTHESIA; PROPOFOL; PHARMACOKINETICS; MONITORS; DEPTH; MODEL;
D O I
10.1007/s10877-020-00627-3
中图分类号
R614 [麻醉学];
学科分类号
100217 ;
摘要
Brain monitors which track quantitative electroencephalogram (EEG) signatures to monitor sedation levels are drug and patient specific. There is a need for robust sedation level monitoring systems to accurately track sedation levels across all drug classes, sex and age groups. Forty-four quantitative features estimated from a pooled dataset of 204 EEG recordings from 66 healthy adult volunteers who received either propofol, dexmedetomidine, or sevoflurane (all with and without remifentanil) were used in a machine learning based automated system to estimate the depth of sedation. Model training and evaluation were performed using leave-one-out cross validation methodology. We trained four machine learning models to predict sedation levels and evaluated the influence of remifentanil, age, and sex on the prediction performance. The area under the receiver-operator characteristic curve (AUC) was used to assess the performance of the prediction model. The ensemble tree with bagging outperformed other machine learning models and predicted sedation levels with an AUC = 0.88 (0.81-0.90). There were significant differences in the prediction probability of the automated systems when trained and tested across different age groups and sex. The performance of the EEG based sedation level prediction system is drug, sex, and age specific. Nonlinear machine-learning models using quantitative EEG features can accurately predict sedation levels. The results obtained in this study may provide a useful reference for developing next generation EEG based sedation level prediction systems using advanced machine learning algorithms.
引用
收藏
页码:121 / 130
页数:10
相关论文
共 35 条
  • [1] Permutation entropy: A natural complexity measure for time series
    Bandt, C
    Pompe, B
    [J]. PHYSICAL REVIEW LETTERS, 2002, 88 (17) : 4
  • [2] DYNAMIC BEHAVIOR OF BIS, M-ENTROPY AND NEUROSENSE BRAIN FUNCTION MONITORS
    Bibian, Stephane
    Dumont, Guy A.
    Zikov, Tatjana
    [J]. JOURNAL OF CLINICAL MONITORING AND COMPUTING, 2011, 25 (01) : 81 - 87
  • [3] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32
  • [4] A Randomized Controlled Trial Comparison of NeuroSENSE and Bispectral Brain Monitors During Propofol-Based Versus Sevoflurane-Based General Anesthesia
    Bresson, Julie
    Gayat, Etienne
    Agrawal, Gracee
    Chazot, Thierry
    Liu, Ngai
    Hausser-Haw, Chantal
    Fischler, Marc
    [J]. ANESTHESIA AND ANALGESIA, 2015, 121 (05) : 1194 - 1201
  • [5] CHERNIK DA, 1990, J CLIN PSYCHOPHARM, V10, P244
  • [6] Dexmedetomidine pharmacokineticpharmacodynamic modelling in healthy volunteers: 1. Influence of arousal on bispectral index and sedation
    Colin, P. J.
    Hannivoort, L. N.
    Eleveld, D. J.
    Reyntjens, K. M. E. M.
    Absalom, A. R.
    Vereecke, H. E. M.
    Struys, M. M. R. F.
    [J]. BRITISH JOURNAL OF ANAESTHESIA, 2017, 119 (02) : 200 - 210
  • [7] SUPPORT-VECTOR NETWORKS
    CORTES, C
    VAPNIK, V
    [J]. MACHINE LEARNING, 1995, 20 (03) : 273 - 297
  • [8] An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
    Dietterich, TG
    [J]. MACHINE LEARNING, 2000, 40 (02) : 139 - 157
  • [9] An Allometric Model of Remifentanil Pharmacokinetics and Pharmacodynamics
    Eleveld, Douglas J.
    Proost, Johannes H.
    Vereecke, Hugo
    Absalom, Anthony R.
    Olofsen, Erik
    Vuyk, Jaap
    Struys, Michel M. R. F.
    [J]. ANESTHESIOLOGY, 2017, 126 (06) : 1005 - 1018
  • [10] NONLINEAR TIME SEQUENCE ANALYSIS
    Grassberger, Peter
    Schreiber, Thomas
    Schaffrath, Carsten
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1991, 1 (03): : 521 - 547