Brain monitors which track quantitative electroencephalogram (EEG) signatures to monitor sedation levels are drug and patient specific. There is a need for robust sedation level monitoring systems to accurately track sedation levels across all drug classes, sex and age groups. Forty-four quantitative features estimated from a pooled dataset of 204 EEG recordings from 66 healthy adult volunteers who received either propofol, dexmedetomidine, or sevoflurane (all with and without remifentanil) were used in a machine learning based automated system to estimate the depth of sedation. Model training and evaluation were performed using leave-one-out cross validation methodology. We trained four machine learning models to predict sedation levels and evaluated the influence of remifentanil, age, and sex on the prediction performance. The area under the receiver-operator characteristic curve (AUC) was used to assess the performance of the prediction model. The ensemble tree with bagging outperformed other machine learning models and predicted sedation levels with an AUC = 0.88 (0.81-0.90). There were significant differences in the prediction probability of the automated systems when trained and tested across different age groups and sex. The performance of the EEG based sedation level prediction system is drug, sex, and age specific. Nonlinear machine-learning models using quantitative EEG features can accurately predict sedation levels. The results obtained in this study may provide a useful reference for developing next generation EEG based sedation level prediction systems using advanced machine learning algorithms.
机构:
Hop Foch, Dept Anesthesiol, Suresnes, France
Univ Versailles St Quentin En Yvelines, Hop Foch, Dept Anesthesiol, Versailles, FranceHop Foch, Dept Anesthesiol, Suresnes, France
机构:
Hop Foch, Dept Anesthesiol, Suresnes, France
Univ Versailles St Quentin En Yvelines, Hop Foch, Dept Anesthesiol, Versailles, FranceHop Foch, Dept Anesthesiol, Suresnes, France
Chazot, Thierry
Liu, Ngai
论文数: 0引用数: 0
h-index: 0
机构:
Hop Foch, Dept Anesthesiol, Suresnes, France
Univ Versailles St Quentin En Yvelines, Hop Foch, Dept Anesthesiol, Versailles, France
Outcomes Res Consortium, Cleveland, OH USAHop Foch, Dept Anesthesiol, Suresnes, France
Liu, Ngai
Hausser-Haw, Chantal
论文数: 0引用数: 0
h-index: 0
机构:
Hop Foch, Dept EEG, Suresnes, FranceHop Foch, Dept Anesthesiol, Suresnes, France
Hausser-Haw, Chantal
Fischler, Marc
论文数: 0引用数: 0
h-index: 0
机构:
Hop Foch, Dept Anesthesiol, Suresnes, France
Univ Versailles St Quentin En Yvelines, Hop Foch, Dept Anesthesiol, Versailles, FranceHop Foch, Dept Anesthesiol, Suresnes, France
机构:
Hop Foch, Dept Anesthesiol, Suresnes, France
Univ Versailles St Quentin En Yvelines, Hop Foch, Dept Anesthesiol, Versailles, FranceHop Foch, Dept Anesthesiol, Suresnes, France
机构:
Hop Foch, Dept Anesthesiol, Suresnes, France
Univ Versailles St Quentin En Yvelines, Hop Foch, Dept Anesthesiol, Versailles, FranceHop Foch, Dept Anesthesiol, Suresnes, France
Chazot, Thierry
Liu, Ngai
论文数: 0引用数: 0
h-index: 0
机构:
Hop Foch, Dept Anesthesiol, Suresnes, France
Univ Versailles St Quentin En Yvelines, Hop Foch, Dept Anesthesiol, Versailles, France
Outcomes Res Consortium, Cleveland, OH USAHop Foch, Dept Anesthesiol, Suresnes, France
Liu, Ngai
Hausser-Haw, Chantal
论文数: 0引用数: 0
h-index: 0
机构:
Hop Foch, Dept EEG, Suresnes, FranceHop Foch, Dept Anesthesiol, Suresnes, France
Hausser-Haw, Chantal
Fischler, Marc
论文数: 0引用数: 0
h-index: 0
机构:
Hop Foch, Dept Anesthesiol, Suresnes, France
Univ Versailles St Quentin En Yvelines, Hop Foch, Dept Anesthesiol, Versailles, FranceHop Foch, Dept Anesthesiol, Suresnes, France