Plasmonic metasurface cavity for simultaneous enhancement of optical electric and magnetic fields in deep subwavelength volume

被引:8
作者
Hong, Jongwoo [1 ,2 ]
Kim, Sun-Je [1 ,2 ]
Kim, Inki [3 ]
Yun, Hansik [1 ,2 ]
Mun, Sang-Eun [1 ,2 ]
Rho, Junsuk [3 ,4 ]
Lee, Byoungho [1 ,2 ]
机构
[1] Seoul Natl Univ, Interuniv Semicond Res Ctr, Gwanak Gu Gwanakro 1, Seoul 08826, South Korea
[2] Seoul Natl Univ, Sch Elect & Comp Engn, Gwanak Gu Gwanakro 1, Seoul 08826, South Korea
[3] Pohang Univ Sci & Technol POSTECH, Dept Mech Engn, Pohang 37673, South Korea
[4] Pohang Univ Sci & Technol POSTECH, Dept Chem Engn, Pohang 37673, South Korea
基金
新加坡国家研究基金会;
关键词
WAVE-GUIDES; 2ND-HARMONIC GENERATION; 3RD-HARMONIC GENERATION; BOWTIE NANOANTENNAS; LIGHT; METAMATERIALS; FREQUENCIES; APERTURE; TRANSMISSION; RESONATORS;
D O I
10.1364/OE.26.013340
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
has been hard to achieve simultaneous plasmonic enhancement of nanoscale light-matter interactions in terms of both electric and magnetic manners with easily reproducible fabrication method and systematic theoretical design rule. In this paper, a novel concept of a flat nanofocusing device is proposed for simultaneously squeezing both electric and magnetic fields in deep-subwavelength volume (similar to lambda(3)/538) in a large area. Based on the funneled unit cell structures and surface plasmon-assisted coherent interactions between them, the array of rectangular nanocavity connected to a tapered nanoantenna, plasmonic metasurface cavity, is constructed by periodic arrangement of the unit cell. The average enhancement factors of electric and magnetic field intensities reach about 60 and 22 in nanocavities, respectively. The proposed outstanding performance of the device is verified numerically and experimentally. We expect that this work would expand methodologies involving optical near-field manipulations in large areas and related potential applications including nanophotonic sensors, nonlinear responses. and quantum interactions. (C) 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:13340 / 13348
页数:9
相关论文
共 53 条
[1]   Mapping and Quantifying Electric and Magnetic Dipole Luminescence at the Nanoscale [J].
Aigouy, L. ;
Caze, A. ;
Gredin, P. ;
Mortier, M. ;
Carminati, R. .
PHYSICAL REVIEW LETTERS, 2014, 113 (07)
[2]  
Akselrod GM, 2014, NAT PHOTONICS, V8, P835, DOI [10.1038/nphoton.2014.228, 10.1038/NPHOTON.2014.228]
[3]   An electromagnetic multipole expansion beyond the long-wavelength approximation [J].
Alaee, Rasoul ;
Rockstuhl, Carsten ;
Fernandez-Corbaton, I. .
OPTICS COMMUNICATIONS, 2018, 407 :17-21
[4]   Magnetic field concentrator for probing optical magnetic metamaterials [J].
Antosiewicz, Tomasz J. ;
Wrobel, Piotr ;
Szoplik, Tomasz .
OPTICS EXPRESS, 2010, 18 (25) :25906-25911
[5]   Modifying magnetic dipole spontaneous emission with nanophotonic structures [J].
Baranov, Denis G. ;
Savelev, Roman S. ;
Li, Sergey V. ;
Krasnok, Alexander E. ;
Alu, Andrea .
LASER & PHOTONICS REVIEWS, 2017, 11 (03)
[6]   Surface plasmon subwavelength optics [J].
Barnes, WL ;
Dereux, A ;
Ebbesen, TW .
NATURE, 2003, 424 (6950) :824-830
[7]   Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films [J].
Brolo, AG ;
Gordon, R ;
Leathem, B ;
Kavanagh, KL .
LANGMUIR, 2004, 20 (12) :4813-4815
[8]   Probing the Magnetic Field of Light at Optical Frequencies [J].
Burresi, M. ;
van Oosten, D. ;
Kampfrath, T. ;
Schoenmaker, H. ;
Heideman, R. ;
Leinse, A. ;
Kuipers, L. .
SCIENCE, 2009, 326 (5952) :550-553
[9]   Bridged Bowtie Aperture Antenna for Producing an Electromagnetic Hot Spot [J].
Chen, Yang ;
Chen, Yuhang ;
Chu, Jiaru ;
Xu, Xianfan .
ACS PHOTONICS, 2017, 4 (03) :567-575
[10]  
Choo H, 2012, NAT PHOTONICS, V6, P837, DOI [10.1038/nphoton.2012.277, 10.1038/NPHOTON.2012.277]