How Messenger RNA and Nascent Chain Sequences Regulate Translation Elongation

被引:49
作者
Choi, Junhong [1 ,2 ]
Grosely, Rosslyn [1 ]
Prabhakar, Arjun [1 ,3 ]
Lapointe, Christopher P. [1 ]
Wang, Jinfan [1 ]
Puglisi, Joseph D. [1 ]
机构
[1] Stanford Univ, Sch Med, Dept Biol Struct, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA
[3] Stanford Univ, Program Biophys, Stanford, CA 94305 USA
来源
ANNUAL REVIEW OF BIOCHEMISTRY, VOL 87 | 2018年 / 87卷
关键词
protein synthesis; ribosome; recoding; translation control; mRNA; nascent-peptide chain; FACTOR EF-P; DYNAMIC N-1-METHYLADENOSINE METHYLOME; PEPTIDYL TRANSFERASE CENTER; RIBOSOME PROFILING REVEALS; ALLOSTERIC 3-SITE MODEL; PROTEIN-QUALITY CONTROL; AMINOACYL-TRANSFER-RNA; SITE TRANSFER-RNA; ESCHERICHIA-COLI; CRYO-EM;
D O I
10.1146/annurev-biochem-060815-014818
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Translation elongation is a highly coordinated, multistep, multifactor process that ensures accurate and efficient addition of amino acids to a growing nascent-peptide chain encoded in the sequence of translated messengerRNA (mRNA). Although translation elongation is heavily regulated by external factors, there is clear evidence that mRNA and nascent-peptide sequences control elongation dynamics, determining both the sequence and structure of synthesized proteins. Advances in methods have driven experiments that revealed the basic mechanisms of elongation as well as the mechanisms of regulation by mRNA and nascent-peptide sequences. In this review, we highlight how mRNA and nascent-peptide elements manipulate the translation machinery to alter the dynamics and pathway of elongation.
引用
收藏
页码:421 / 449
页数:29
相关论文
共 182 条
  • [1] Fluctuations between multiple EF-G-induced chimeric tRNA states during translocation on the ribosome
    Adio, Sarah
    Senyushkina, Tamara
    Peske, Frank
    Fischer, Niels
    Wintermeyer, Wolfgang
    Rodnina, Marina V.
    [J]. NATURE COMMUNICATIONS, 2015, 6
  • [2] Ribosome rearrangements at the onset of translational bypassing
    Agirrezabala, Xabier
    Samatova, Ekaterina
    Klimova, Mariia
    Zamora, Miguel
    Gil-Carton, David
    Rodnina, Marina V.
    Valle, Mikel
    [J]. SCIENCE ADVANCES, 2017, 3 (06):
  • [3] [Anonymous], 2017, RNA
  • [4] A combined cryo-EM and molecular dynamics approach reveals the mechanism of ErmBL-mediated translation arrest
    Arenz, Stefan
    Bock, Lars V.
    Graf, Michael
    Innis, C. Axel
    Beckmann, Roland
    Grubmueller, Helmut
    Vaiana, Andrea C.
    Wilson, Daniel N.
    [J]. NATURE COMMUNICATIONS, 2016, 7
  • [5] Drug Sensing by the Ribosome Induces Translational Arrest via Active Site Perturbation
    Arenz, Stefan
    Meydan, Sezen
    Starosta, Agata L.
    Berninghausen, Otto
    Beckmann, Roland
    Vazquez-Laslop, Nora
    Wilson, Daniel N.
    [J]. MOLECULAR CELL, 2014, 56 (03) : 446 - 452
  • [6] Translational control by lysine-encoding A-rich sequences
    Arthur, Laura L.
    Pavlovic-Djuranovic, Slavica
    Koutmou, Kristin S.
    Green, Rachel
    Szczesny, Pawel
    Djuranovic, Sergej
    [J]. SCIENCE ADVANCES, 2015, 1 (06):
  • [7] LOW ACTIVITY OF BETA-GALACTOSIDASE IN FRAMESHIFT MUTANTS OF ESCHERICHIA-COLI
    ATKINS, JF
    ELSEVIERS, D
    GORINI, L
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1972, 69 (05) : 1192 - +
  • [8] Atkins JF, 2010, NUCLEIC ACIDS MOL BI, V24, P1, DOI 10.1007/978-0-387-89382-2
  • [9] Ribosomal frameshifting and transcriptional slippage: From genetic steganography and cryptography to adventitious use
    Atkins, John F.
    Loughran, Gary
    Bhatt, Pramod R.
    Firth, Andrew E.
    Baranov, Pavel V.
    [J]. NUCLEIC ACIDS RESEARCH, 2016, 44 (15) : 7007 - 7078
  • [10] Site-Specific Solid-State NMR Studies of "Trigger Factor" in Complex with the Large Ribosomal Subunit 50S
    Barbet-Massin, Emeline
    Huang, Chih-Ting
    Daebel, Venita
    Hsu, Shang-Te Danny
    Reif, Bernd
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (14) : 4367 - 4369