Identification of Candidate Genes for Seed Glucosinolate Content Using Association Mapping in Brassica napus L.

被引:41
作者
Qu, Cun-Min [1 ,2 ,3 ]
Li, Shi-Meng [1 ,2 ]
Duan, Xiu-Jian [1 ,2 ]
Fan, Jin-Hua [1 ,2 ]
Jia, Le-Dong [1 ,2 ]
Zhao, Hui-Yan [1 ,2 ]
Lu, Kun [1 ,2 ]
Li, Jia-Na [1 ,2 ]
Xu, Xin-Fu [1 ,2 ]
Wang, Rui [1 ,2 ]
机构
[1] Southwest Univ, Chongqing Engn Res Ctr Rapeseed, Coll Agron & Biotechnol, Chongqing 400716, Peoples R China
[2] Southwest Univ, Minist Educ, Engn Res Ctr South Upland Agr, Chongqing 400716, Peoples R China
[3] Univ Saskatchewan, Food & Bioprod Sci, Saskatoon, SK S7N 5A8, Canada
来源
GENES | 2015年 / 6卷 / 04期
基金
美国国家科学基金会;
关键词
Brassica napus L; seed glucosinolate (GS) content; association mapping; single nucleotide polymorphism (SNP); QUANTITATIVE TRAIT LOCI; PHENOLIC-COMPOUNDS; BIOSYNTHESIS; RAPE; YIELD; ACCUMULATION; ARCHITECTURE; DISSECTS; QUALITY; GENOME;
D O I
10.3390/genes6041215
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Rapeseed contains glucosinolates, a toxic group of sulfur-containing glucosides, which play critical roles in defense against herbivores and microbes. However, the presence of glucosinolates in rapeseed reduces the value of the meal as feed for livestock. We performed association mapping of seed glucosinolate (GS) content using the 60K Brassica Infinium single nucleotide polymorphism (SNP) array in 520 oilseed rape accessions. A total of 11 peak SNPs significantly associated with GS content were detected in growing seasons of 2013 and 2014 and were located on B. napus chromosomes A08, A09, C03, and C09, respectively. Two associated regions of GS content covered by these markers were further verified, and three B. napus homologous genes involved in the biosynthesis and accumulation of GS were identified. These genes were multigene family members and were distributed on different chromosomes. Moreover, two genes (BnGRT2 and BnMYB28) associated with GS content were validated by the qRT-PCR analysis of their expression profiles. The further identification and functionalization of these genes will provide useful insight into the mechanism underlying GS biosynthesis and allocation in B. napus, and the associated SNPs markers could be helpful for molecular maker-assisted breeding for low seed GS in B. napus.
引用
收藏
页码:1215 / 1229
页数:15
相关论文
共 42 条
  • [1] Association mapping of yield and its components in rice cultivars
    Agrama, H. A.
    Eizenga, G. C.
    Yan, W.
    [J]. MOLECULAR BREEDING, 2007, 19 (04) : 341 - 356
  • [2] Integration of Biosynthesis and Long-Distance Transport Establish Organ-Specific Glucosinolate Profiles in Vegetative Arabidopsis
    Andersen, Tonni Grube
    Nour-Eldin, Hussam Hassan
    Fuller, Victoria Louise
    Olsen, Carl Erik
    Burow, Meike
    Halkier, Barbara Ann
    [J]. PLANT CELL, 2013, 25 (08) : 3133 - 3145
  • [3] Targeted silencing of BjMYB28 transcription factor gene directs development of low glucosinolate lines in oilseed Brassica juncea
    Augustine, Rehna
    Mukhopadhyay, Arundhati
    Bisht, Naveen C.
    [J]. PLANT BIOTECHNOLOGY JOURNAL, 2013, 11 (07) : 855 - 866
  • [4] Marker-assisted increase of genetic diversity in a double-low seed quality winter oilseed rape genetic background
    Basunanda, P.
    Spiller, T. H.
    Hasan, M.
    Gehringer, A.
    Schondelmaier, J.
    Luehs, W.
    Friedt, W.
    Snowdon, R. J.
    [J]. PLANT BREEDING, 2007, 126 (06) : 581 - 587
  • [5] The Arabidopsis ATR1 Myb transcription factor controls indolic glucosinolate homeostasis
    Celenza, JL
    Quiel, JA
    Smolen, GA
    Merrikh, H
    Silvestro, AR
    Normanly, J
    Bender, J
    [J]. PLANT PHYSIOLOGY, 2005, 137 (01) : 253 - 262
  • [6] Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome
    Chalhoub, Boulos
    Denoeud, France
    Liu, Shengyi
    Parkin, Isobel A. P.
    Tang, Haibao
    Wang, Xiyin
    Chiquet, Julien
    Belcram, Harry
    Tong, Chaobo
    Samans, Birgit
    Correa, Margot
    Da Silva, Corinne
    Just, Jeremy
    Falentin, Cyril
    Koh, Chu Shin
    Le Clainche, Isabelle
    Bernard, Maria
    Bento, Pascal
    Noel, Benjamin
    Labadie, Karine
    Alberti, Adriana
    Charles, Mathieu
    Arnaud, Dominique
    Guo, Hui
    Daviaud, Christian
    Alamery, Salman
    Jabbari, Kamel
    Zhao, Meixia
    Edger, Patrick P.
    Chelaifa, Houda
    Tack, David
    Lassalle, Gilles
    Mestiri, Imen
    Schnel, Nicolas
    Le Paslier, Marie-Christine
    Fan, Guangyi
    Renault, Victor
    Bayer, Philippe E.
    Golicz, Agnieszka A.
    Manoli, Sahana
    Lee, Tae-Ho
    Vinh Ha Dinh Thi
    Chalabi, Smahane
    Hu, Qiong
    Fan, Chuchuan
    Tollenaere, Reece
    Lu, Yunhai
    Battail, Christophe
    Shen, Jinxiong
    Sidebottom, Christine H. D.
    [J]. SCIENCE, 2014, 345 (6199) : 950 - 953
  • [7] Future tools for association mapping in crop plants
    Duran, Chris
    Eales, Dominic
    Marshall, Daniel
    Imelfort, Michael
    Stiller, Jiri
    Berkman, Paul J.
    Clark, Terry
    McKenzie, Megan
    Appleby, Nikki
    Batley, Jacqueline
    Basford, Kaye
    Edwards, David
    [J]. GENOME, 2010, 53 (11) : 1017 - 1023
  • [8] Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study
    Evanno, G
    Regnaut, S
    Goudet, J
    [J]. MOLECULAR ECOLOGY, 2005, 14 (08) : 2611 - 2620
  • [9] MYB34, MYB51, and MYB122 Distinctly Regulate Indolic Glucosinolate Biosynthesis in Arabidopsis thaliana
    Frerigmann, Henning
    Gigolashvili, Tamara
    [J]. MOLECULAR PLANT, 2014, 7 (05) : 814 - 828
  • [10] Association mapping of seed quality traits in Brassica napus L. using GWAS and candidate QTL approaches
    Gajardo, Humberto A.
    Wittkop, Benjamin
    Soto-Cerda, Braulio
    Higgins, Erin E.
    Parkin, Isobel A. P.
    Snowdon, Rod J.
    Federico, Maria L.
    Iniguez-Luy, Federico L.
    [J]. MOLECULAR BREEDING, 2015, 35 (06)