A convolutional neural network algorithm for automatic segmentation of head and neck organs at risk using deep lifelong learning

被引:47
作者
Chan, Jason W. [1 ]
Kearney, Vasant [1 ]
Haaf, Samuel [1 ]
Wu, Susan [1 ]
Bogdanov, Madeleine [1 ]
Reddick, Mariah [1 ]
Dixit, Nayha [1 ]
Sudhyadhom, Atchar [1 ]
Chen, Josephine [1 ]
Yom, Sue S. [1 ]
Solberg, Timothy D. [1 ]
机构
[1] Univ Calif San Francisco, Dept Radiat Oncol, San Francisco, CA 94115 USA
关键词
convolutional neural network; autosegmentation; head and neck; deep lifelong learning; RADIATION-THERAPY; CT IMAGES; PROSTATE; CANCER; AUTOSEGMENTATION; DELINEATION;
D O I
10.1002/mp.13495
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose This study suggests a lifelong learning-based convolutional neural network (LL-CNN) algorithm as a superior alternative to single-task learning approaches for automatic segmentation of head and neck (OARs) organs at risk. Methods and materials Lifelong learning-based convolutional neural network was trained on twelve head and neck OARs simultaneously using a multitask learning framework. Once the weights of the shared network were established, the final multitask convolutional layer was replaced by a single-task convolutional layer. The single-task transfer learning network was trained on each OAR separately with early stoppage. The accuracy of LL-CNN was assessed based on Dice score and root-mean-square error (RMSE) compared to manually delineated contours set as the gold standard. LL-CNN was compared with 2D-UNet, 3D-UNet, a single-task CNN (ST-CNN), and a pure multitask CNN (MT-CNN). Training, validation, and testing followed Kaggle competition rules, where 160 patients were used for training, 20 were used for internal validation, and 20 in a separate test set were used to report final prediction accuracies. Results On average contours generated with LL-CNN had higher Dice coefficients and lower RMSE than 2D-UNet, 3D-Unet, ST- CNN, and MT-CNN. LL-CNN required 72 hrs to train using a distributed learning framework on 2 Nvidia 1080Ti graphics processing units. LL-CNN required 20 s to predict all 12 OARs, which was approximately as fast as the fastest alternative methods with the exception of MT-CNN. Conclusions This study demonstrated that for head and neck organs at risk, LL-CNN achieves a prediction accuracy superior to all alternative algorithms.
引用
收藏
页码:2204 / 2213
页数:10
相关论文
共 51 条
[1]  
Anderson Carryn M, 2014, Jacobs J Radiat Oncol, V1, P006
[2]  
[Anonymous], 2017, ARXIV170900382
[3]  
[Anonymous], ARXIV180209587
[4]  
[Anonymous], 2017, ARXIV170609274
[5]  
[Anonymous], 2017, ABS170907330 CORR
[6]  
[Anonymous], 2017, ARXIV170509435
[7]  
[Anonymous], GOOGLE PATENTS
[8]  
[Anonymous], 2016, 3D VIS 3DV 2016 4 IN
[9]  
[Anonymous], SPRINGER
[10]   CT-based delineation of organs at risk in the head and neck region: DAHANCA, EORTC, GORTEC, HKNPCSG, NCIC CTG, NCRI, NRG Oncology and TROG consensus guidelines [J].
Brouwer, Charlotte L. ;
Steenbakkers, Roel J. H. M. ;
Bourhis, Jean ;
Budach, Wilfried ;
Grau, Cai ;
Gregoire, Vincent ;
van Herk, Marcel ;
Lee, Anne ;
Maingon, Philippe ;
Nutting, Chris ;
O'Sullivan, Brian ;
Porceddu, Sandro V. ;
Rosenthal, David I. ;
Sijtsema, Nanna M. ;
Langendijk, Johannes A. .
RADIOTHERAPY AND ONCOLOGY, 2015, 117 (01) :83-90