On the duality between the hyperbolic Sutherland and the rational Ruijs']jsenaars-Schneider models

被引:29
作者
Feher, L. [1 ,2 ]
Klimcik, C. [3 ]
机构
[1] MTA KFKI RMKI, Dept Theoret Phys, H-1525 Budapest, Hungary
[2] Univ Szeged, Dept Theoret Phys, H-6720 Szeged, Hungary
[3] Inst Math Luminy, F-13288 Marseille, France
基金
匈牙利科学研究基金会;
关键词
DIMENSIONAL INTEGRABLE SYSTEMS; ACTION-ANGLE MAPS; SCATTERING-THEORY; SOLITONS;
D O I
10.1088/1751-8113/42/18/185202
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider two families of commuting Hamiltonians on the cotangent bundle of the group GL(n, C), and show that upon an appropriate single symplectic reduction they descend to the spectral invariants of the hyperbolic Sutherland and of the rational Ruijsenaars-Schneider Lax matrices, respectively. The duality symplectomorphism between these two integrable models that was constructed by Ruijsenaars using direct methods can then be interpreted geometrically simply as a gauge transformation connecting two cross sections of the orbits of the reduction group.
引用
收藏
页数:13
相关论文
共 25 条
[1]   RATIONAL AND ELLIPTIC SOLUTIONS OF KORTEWEG DE-VRIES EQUATION AND A RELATED MANY-BODY PROBLEM [J].
AIRAULT, H ;
MCKEAN, HP ;
MOSER, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1977, 30 (01) :95-148
[2]  
[Anonymous], SYMPLECTIC GEOMETRY
[3]   On the Hamiltonian structure of the spin Ruijs']jsenaars-Schneider model [J].
Arutyunov, GE ;
Frolov, SA .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (18) :4203-4216
[4]  
Avan J, 2000, CRM SER MATH PHYS, P1
[5]  
CALOGERO F, 2001, CLASSICAL MANY BODY
[6]  
CALOGERO F, 1975, LETT NUOVO CIMENTO, V13, P383
[7]   Bispectrality for the quantum Ruijs']jsenaars model and its integrable deformation [J].
Chalykh, OA .
JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (08) :5139-5167
[8]   DIFFERENTIAL-EQUATIONS IN THE SPECTRAL PARAMETER [J].
DUISTERMAAT, JJ ;
GRUNBAUM, FA .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1986, 103 (02) :177-240
[9]  
FEHER L, POISSON LI INT UNPUB
[10]   Poisson-Lie Generalization of the Kazhdan-Kostant-Sternberg Reduction [J].
Feher, Laszlo ;
Klimcik, Ctirad .
LETTERS IN MATHEMATICAL PHYSICS, 2009, 87 (1-2) :125-138