Optimum design-based ratio estimators of the distribution function

被引:9
作者
Munoz, J. F. [1 ]
Alvarez, E. [2 ]
Rueda, M. [3 ]
机构
[1] Univ Granada, Dept Quantitat Methods Econ & Business, E-18071 Granada, Spain
[2] Polytech Univ Cartagena, Ctr Univ Def, Murcia 30720, Spain
[3] Univ Granada, Dept Stat & OR, E-18071 Granada, Spain
关键词
auxiliary information; variance; quantile; low income proportion; inclusion probability; POPULATION-DISTRIBUTION FUNCTION; AUXILIARY INFORMATION; MEDIAN ESTIMATION; QUANTILES;
D O I
10.1080/02664763.2013.870983
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The ratio method is commonly used to the estimation of means and totals. This method was extended to the problem of estimating the distribution function. An alternative ratio estimator of the distribution function is defined. A result that compares the variances of the aforementioned ratio estimators is used to define optimum design-based ratio estimators of the distribution function. Different empirical results indicate that the optimum ratio estimators can be more efficient than alternative ratio estimators. In addition, we show by simulations that alternative ratio estimators can have large biases, whereas biases of the optimum ratio estimators are negligible in this situation.
引用
收藏
页码:1395 / 1407
页数:13
相关论文
共 19 条
  • [1] [Anonymous], 2011, Model Assisted Statistics and Applications
  • [2] CHAMBERS RL, 1986, BIOMETRIKA, V73, P597
  • [3] Dorfman AH, 2009, HANDB STAT, V29B, P371, DOI 10.1016/S0169-7161(09)00236-3
  • [4] Haughton J., 2009, HDB POVERTY INEQUALI, DOI DOI 10.1596/978-0-8213-7613-3
  • [5] A GENERALIZATION OF SAMPLING WITHOUT REPLACEMENT FROM A FINITE UNIVERSE
    HORVITZ, DG
    THOMPSON, DJ
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1952, 47 (260) : 663 - 685
  • [6] Kuk A. Y. C, 1994, THEORY METH, V23, P883, DOI [10.1080/03610929408831293, DOI 10.1080/03610929408831293]
  • [7] KUK AYC, 1988, BIOMETRIKA, V75, P97
  • [8] Poverty and inequality in European regions
    Longford, Nicholas T.
    Pittau, Maria Grazia
    Zelli, Roberto
    Massari, Riccardo
    [J]. JOURNAL OF APPLIED STATISTICS, 2012, 39 (07) : 1557 - 1576
  • [9] Murthy M. N., 1967, Sampling theory and methods
  • [10] ON ESTIMATING DISTRIBUTION-FUNCTIONS AND QUANTILES FROM SURVEY DATA USING AUXILIARY INFORMATION
    RAO, JNK
    KOVAR, JG
    MANTEL, HJ
    [J]. BIOMETRIKA, 1990, 77 (02) : 365 - 375