Phenol in High-mass Star-forming Regions

被引:4
|
作者
Ghosh, Rana [1 ]
Sil, Milan [1 ,2 ]
Mondal, Suman Kumar [1 ]
Gorai, Prasanta [3 ]
Sahu, Dipen [4 ]
Kushwaha, Rahul Kumar [5 ]
Sivaraman, Bhalamurugan [6 ]
Das, Ankan [1 ]
机构
[1] Indian Ctr Space Phys, 43 Chalantika,Garia Stn Rd, Kolkata 700084, India
[2] SN Bose Natl Ctr Basic Sci, Kolkata 700106, India
[3] Chalmers Univ Technol, Dept Space Earth & Environm, SE-41296 Gothenburg, Sweden
[4] Acad Sinica, Inst Astron & Astrophys, Taipei 10617, Taiwan
[5] Inst Nucl Res Atomki, Atom & Mol Phys Lab, H-4026 Debrecen, Hungary
[6] Phys Res Lab, Ahmadabad 380009, Gujarat, India
关键词
astrochemistry; ISM: abundances; ISM: molecules; (ISM:) evolution; DEUTERIUM ENRICHMENT; MOLECULAR-HYDROGEN; MICROWAVE-SPECTRA; INTERSTELLAR; MECHANISM; KINETICS; ISOMERS; BENZENE; CYCLOPENTADIENE; ABUNDANCES;
D O I
10.1088/1674-4527/ac6aa9
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Phenol, which belongs to the C6H6O isomeric group, is the simplest molecule in the family of alcohol of the aromatic series. Although phenol has yet to be detected in the interstellar medium, a tentative identification was reported toward the Orion KL hot core using the IRAM-30 m line survey. To explore some more species of this isomeric group, we consider ten species to study the fate of their astronomical detection. It is noticed that phenol is the most energetically favorable isomer of this group. In contrast, propargyl ether is the least favorable (having relative energy similar to 103 kcal mol(-1) compared to phenol) species of this group. So far, the studies associated with the formation of phenol are heavily concentrated on combustion chemistry. Here, we suggest a few key reactions (C6H6 + OH -> C6H5 + H2O, C6H6 + O -> C6H5OH, C6H6 + H -> C6H5 + H-2, and C6H5 + OH -> C6H5OH + h nu) for the formation of phenol. All these pathways are included in a large gas-grain chemical network to study its formation in high mass star-forming regions and dark cloud environments. It is noticed that the phenyl (-C6H5) formation by the ice-phase hydrogen abstraction reaction of benzene (i.e., C6H6 + OH -> C6H5 + H2O if allowed at similar to 10 K) could serve as the starting point for the formation of phenol in the gas phase by radiative association reaction C6H5 + OH -> C6H5OH + h nu. The gas-phase reaction C6H6 + O -> C6H5OH significantly contributes to the formation of phenol, when the ice-phase reaction C6H6 + OH -> C6H5 + H2O is not considered at low temperature. Band 4 ALMA archival data of a hot molecular core, G10.47+0.03, are analyzed. It yields an upper limit on phenol abundance of 5.19 x 10(-9). Our astrochemical model delivers an upper limit on phenol abundance of similar to 2.20 x 10(-9) in the hot molecular core, whereas its production in the dark cloud is not satisfactory.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] The Difference in Abundance between N-bearing and O-bearing Species in High-mass Star-forming Regions
    Suzuki, Taiki
    Ohishi, Masatoshi
    Saito, Masao
    Hirota, Tomoya
    Majumdar, Liton
    Wakelam, Valentine
    ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2018, 237 (01)
  • [32] The high-mass star-forming region IRAS 18182-1433
    Beuther, H.
    Zhang, Q.
    Sridharan, T. K.
    Lee, C. -F.
    Zapata, L. A.
    ASTRONOMY & ASTROPHYSICS, 2006, 454 (01) : 221 - 231
  • [33] H2D+ IN THE HIGH-MASS STAR-FORMING REGION CYGNUS X
    Pillai, T.
    Caselli, P.
    Kauffmann, J.
    Zhang, Q.
    Thompson, M. A.
    Lis, D. C.
    ASTROPHYSICAL JOURNAL, 2012, 751 (02)
  • [34] Deconstructing the high-mass star-forming region IRAS 23033+5951
    Reid, Michael A.
    Matthews, Brenda C.
    ASTROPHYSICAL JOURNAL, 2008, 675 (02) : 1343 - 1351
  • [35] The Chemical Structure of Young High-mass Star-forming Clumps. I. Deuteration
    Feng, S.
    Caselli, P.
    Wang, K.
    Lin, Y.
    Beuther, H.
    Sipil, O.
    ASTROPHYSICAL JOURNAL, 2019, 883 (02)
  • [36] Probing the initial conditions of high-mass star formation II. Fragmentation, stability, and chemistry towards high-mass star-forming regions G29.96-0.02 and G35.20-1.74
    Pillai, T.
    Kauffmann, J.
    Wyrowski, F.
    Hatchell, J.
    Gibb, A. G.
    Thompson, M. A.
    ASTRONOMY & ASTROPHYSICS, 2011, 530
  • [37] Acetaldehyde in star-forming regions
    Charnley, SB
    SPACE LIFE SCIENCES: STEPS TOWARD ORIGIN(S) OF LIFE, 2004, 33 (01): : 23 - 30
  • [38] First survey of HCNH+ in high-mass star-forming cloud cores
    Fontani, F.
    Colzi, L.
    Redaelli, E.
    Sipilae, O.
    Caselli, P.
    ASTRONOMY & ASTROPHYSICS, 2021, 651
  • [39] The global chemical properties of high-mass star forming clumps at different evolutionary stages
    Zhang, Yan-Jun
    Zhou, Jian-Jun
    Esimbek, Jarken
    He, Yu-Xin
    Li, Da-Lei
    Tang, Xin-Di
    Ji, Wei-Guang
    Yuan, Ye
    Guo, Wei-Hua
    ASTROPHYSICS AND SPACE SCIENCE, 2016, 361 (06)
  • [40] APEX Millimeter Observations of Methanol Emission Toward High-mass Star-forming Cores
    Hernandez-Hernandez, Vicente
    Kurtz, Stan
    Kalenskii, Sergei
    Golysheva, Polina
    Garay, Guido
    Zapata, Luis
    Bergman, Per
    ASTRONOMICAL JOURNAL, 2019, 158 (01)