Closure Properties of Solutions to Heat Inequalities

被引:16
作者
Bennett, Jonathan [1 ]
Bez, Neal [2 ]
机构
[1] Univ Birmingham, Sch Math, Birmingham B15 2TT, W Midlands, England
[2] Univ Glasgow, Dept Math, Univ Gardens, Glasgow G12 8QW, Lanark, Scotland
基金
英国工程与自然科学研究理事会;
关键词
Heat flow; Convolution inequalities; BRASCAMP-LIEB INEQUALITIES; YOUNGS-INEQUALITY; CONVERSE; ENTROPY;
D O I
10.1007/s12220-009-9070-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that if u(1), u(2) : (0, infinity) x R-d -> (0, infinity) are sufficiently well-behaved solutions to certain heat inequalities on Rd then the function u : (0, infinity) x R-d -> (0, infinity) given by u(1/p) = u(1)(1/p1) * u(2)(1/p2) also satisfies a heat inequality of a similar type provided 1/p1 + 1/p2 = 1 + 1/p. On iterating, this result leads to an analogous statement concerning n-fold convolutions. As a corollary, we give a direct heat-flow proof of the sharp n-fold Young convolution inequality and its reverse form.
引用
收藏
页码:584 / 600
页数:17
相关论文
共 18 条