On the rational cuspidal subgroup and the rational torsion points of J(0)(pq)

被引:12
作者
Chua, SK
Ling, S
机构
关键词
D O I
10.1090/S0002-9939-97-03874-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For two distinct prime numbers p, q, we compute the rational cuspidal subgroup C(pq) of J(0)(pq) and determine the e-primary part of the rational torsion subgroup of the old subvariety of Ja(pp) for most primes C. Some results of Berkovic on the nontriviality of the Mordell-Weil group of some Eisenstein factors of J(0)(pq) are also refined.
引用
收藏
页码:2255 / 2263
页数:9
相关论文
共 10 条
[1]  
BERKOVIC VG, 1976, MATH USSR SBORNIK, V30
[2]  
Ligozat G., 1975, B SOC MATH FRANCE, V43, P5
[3]   THE OLD SUBVARIETY OF J(0)(PQ) AND THE EISENSTEIN KERNEL IN JACOBIANS [J].
LING, S .
ISRAEL JOURNAL OF MATHEMATICS, 1993, 84 (03) :365-384
[4]  
LING S, IN PRESS ISRAEL J MA
[5]  
MANIN J, 1972, IZV AKAD NAUK SSSR, V6
[6]  
MAZUR B., 1977, I HAUTES ETUDES SCI, P33, DOI [DOI 10.1007/BF02684339, 10.1007/BF02684339]
[7]  
OGG AP, 1974, B SOC MATH FR, V102, P449
[8]  
OGG AP, 1973, P S PUR MATH, V20, P221
[9]  
RIBET K, 1991, INVENT MATH, V100, P431
[10]  
RIBET K, 1989, AIRTHMETIC ALGEBRAIC, P293