Dynamical Relation between Quantum Squeezing and Entanglement in Coupled Harmonic Oscillator System

被引:4
作者
Chew, Lock Yue [1 ]
Chung, Ning Ning [2 ]
机构
[1] Nanyang Technol Univ, Sch Math & Phys Sci, Div Phys & Appl Phys, Singapore 637371, Singapore
[2] Natl Univ Singapore, Dept Phys, Singapore 117542, Singapore
来源
SYMMETRY-BASEL | 2014年 / 6卷 / 02期
关键词
quantum entanglement; squeezed state; coupled harmonic oscillators; LINEAR CANONICAL-TRANSFORMATIONS; WIGNER PHASE-SPACE; COHERENT; STATES; PARTICLE;
D O I
10.3390/sym6020295
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we investigate into the numerical and analytical relationship between the dynamically generated quadrature squeezing and entanglement within a coupled harmonic oscillator system. The dynamical relation between these two quantum features is observed to vary monotically, such that an enhancement in entanglement is attained at a fixed squeezing for a larger coupling constant. Surprisingly, the maximum attainable values of these two quantum entities are found to consistently equal to the squeezing and entanglement of the system ground state. In addition, we demonstrate that the inclusion of a small anharmonic perturbation has the effect of modifying the squeezing versus entanglement relation into a nonunique form and also extending the maximum squeezing to a value beyond the system ground state.
引用
收藏
页码:295 / 307
页数:13
相关论文
共 38 条
  • [1] [Anonymous], 1955, MOL VIBRATION
  • [2] [Anonymous], 1984, P IEEE INT C COMP, DOI DOI 10.1016/J.TCS.2014.05.025
  • [3] Entanglement properties of the harmonic chain
    Audenaert, K
    Eisert, J
    Plenio, MB
    Werner, RR
    [J]. PHYSICAL REVIEW A, 2002, 66 (04): : 14
  • [4] COMMUNICATION VIA ONE-PARTICLE AND 2-PARTICLE OPERATORS ON EINSTEIN-PODOLSKY-ROSEN STATES
    BENNETT, CH
    WIESNER, SJ
    [J]. PHYSICAL REVIEW LETTERS, 1992, 69 (20) : 2881 - 2884
  • [5] TELEPORTING AN UNKNOWN QUANTUM STATE VIA DUAL CLASSICAL AND EINSTEIN-PODOLSKY-ROSEN CHANNELS
    BENNETT, CH
    BRASSARD, G
    CREPEAU, C
    JOZSA, R
    PERES, A
    WOOTTERS, WK
    [J]. PHYSICAL REVIEW LETTERS, 1993, 70 (13) : 1895 - 1899
  • [6] Quantum engineering - Squeezing entanglement
    Bigelow, N
    [J]. NATURE, 2001, 409 (6816) : 27 - 28
  • [7] QUANTUM ENTANGLEMENT AND SQUEEZING IN COUPLED HARMONIC AND ANHARMONIC OSCILLATOR SYSTEMS
    Chew, Lock Yue
    Chung, Ning Ning
    [J]. JOURNAL OF RUSSIAN LASER RESEARCH, 2011, 32 (04) : 331 - 337
  • [8] Relation of the entanglement entropy and uncertainty product in ground states of coupled anharmonic oscillators
    Chung, N. N.
    Er, C. H.
    Teo, Y. S.
    Chew, L. Y.
    [J]. PHYSICAL REVIEW A, 2010, 82 (01):
  • [9] Dependence of entanglement dynamics on the global classical dynamical regime
    Chung, N. N.
    Chew, L. Y.
    [J]. PHYSICAL REVIEW E, 2009, 80 (01):
  • [10] Energy eigenvalues and squeezing properties of general systems of coupled quantum anharmonic oscillators
    Chung, N. N.
    Chew, L. Y.
    [J]. PHYSICAL REVIEW A, 2007, 76 (03):