Combinatorial optimization methods in disordered systems

被引:3
作者
Bastea, S [1 ]
Burkov, A
Moukarzel, C
Duxbury, PM
机构
[1] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA
[2] Michigan State Univ, Ctr Fundamental Mat Res, E Lansing, MI 48824 USA
[3] Univ Calif Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[4] Univ Fed Fluminense, Inst Fis, BR-24210340 Niteroi, RJ, Brazil
关键词
D O I
10.1016/S0010-4655(99)00313-6
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We give an overview of the applications of methods from combinatorial optimization to problems in disordered systems. The optimization methods are efficient, for example it is possible to find the ground stare of a random field Ising magnet containing one million sites in a couple of minutes on a high end workstation. Combinatorial algorithms for rigidity percolation and minimal energy domain walls in random exchange magnets are even more efficient, (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:199 / 205
页数:7
相关论文
共 32 条
[1]   Disorder-induced roughening in the three-dimensional Ising model [J].
Alava, MJ ;
Duxbury, PM .
PHYSICAL REVIEW B, 1996, 54 (21) :14990-14993
[2]   Invasion percolation and global optimization [J].
Barabasi, AL .
PHYSICAL REVIEW LETTERS, 1996, 76 (20) :3750-3753
[3]   MORPHOLOGY OF GROUND-STATES OF TWO-DIMENSIONAL FRUSTRATION MODEL [J].
BARAHONA, F ;
MAYNARD, R ;
RAMMAL, R ;
UHRY, JP .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1982, 15 (02) :673-699
[4]   Ground state structure of random magnets [J].
Bastea, S ;
Duxbury, PM .
PHYSICAL REVIEW E, 1998, 58 (04) :4261-4265
[5]  
BASTEA S, PREPRINT
[6]  
BASTEA S, 1998, PHYS REV E DEC
[7]   ON THE GROUND-STATES OF THE FRUSTRATION MODEL OF A SPIN-GLASS BY A MATCHING METHOD OF GRAPH-THEORY [J].
BIECHE, I ;
MAYNARD, R ;
RAMMAL, R ;
UHRY, JP .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1980, 13 (08) :2553-2576
[8]   Using network-flow techniques to solve an optimization problem from surface-physics [J].
Blasum, U ;
Hochstattler, W ;
Moll, C ;
Rieger, H .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (18) :L459-L463
[9]   The 3d random field Ising model at zero temperature [J].
DAuriac, JCA ;
Sourlas, N .
EUROPHYSICS LETTERS, 1997, 39 (05) :473-478
[10]  
DAURIAC JCA, 1985, J PHYS LETT-PARIS, V46, pL173, DOI 10.1051/jphyslet:01985004605017300