Experimental Evidence of Accelerated Seismic Release without Critical Failure in Acoustic Emissions of Compressed Nanoporous Materials

被引:40
作者
Baro, Jordi [1 ,2 ,3 ]
Dahmen, Karin A. [1 ]
Davidsen, Jorn [2 ]
Planes, Antoni [3 ]
Castillo, Pedro O. [3 ,4 ]
Nataf, Guillaume F. [3 ,5 ]
Salje, Ekhard K. H. [6 ]
Vives, Eduard [3 ]
机构
[1] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
[2] Univ Calgary, Dept Phys & Astron, 2500 Univ Dr NW, Calgary, AB T2N 1N4, Canada
[3] Univ Barcelona, Dept Fis Mat Condensada, Fac Fis, Marti i Franques 1, E-08028 Barcelona, Catalonia, Spain
[4] Inst Tecnol Oaxaca, CONACYT, Av Ing Victor Bravo Ahuja 125, Oaxaca De Juarez 68030, Mexico
[5] Univ Cambridge, Dept Mat Sci, 27 Charles Babbage Rd, Cambridge CB3 0FS, England
[6] Univ Cambridge, Dept Earth Sci, Downing St, Cambridge CB2 3EQ, England
基金
英国工程与自然科学研究理事会; 美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
SELF-ORGANIZED CRITICALITY; POROUS MATERIALS; CRACKLING NOISE; MOMENT RELEASE; HETEROGENEOUS FAULTS; AFTERSHOCK SEQUENCES; PHASE-TRANSITIONS; ROCK FRACTURE; B-VALUE; EARTHQUAKES;
D O I
10.1103/PhysRevLett.120.245501
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The total energy of acoustic emission (AE) events in externally stressed materials diverges when approaching macroscopic failure. Numerical and conceptual models explain this accelerated seismic release (ASR) as the approach to a critical point that coincides with ultimate failure. Here, we report ASR during soft uniaxial compression of three silica-based (SiO2) nanoporous materials. Instead of a singular critical point, the distribution of AE energies is stationary, and variations in the activity rate are sufficient to explain the presence of multiple periods of ASR leading to distinct brittle failure events. We propose that critical failure is suppressed in the AE statistics by mechanisms of transient hardening. Some of the critical exponents estimated from the experiments are compatible with mean field models, while others are still open to interpretation in terms of the solution of frictional and fracture avalanche models.
引用
收藏
页数:8
相关论文
共 92 条
[1]   Statistical models of fracture [J].
Alava, Mikko J. ;
Nukalaz, Phani K. V. V. ;
Zapperi, Stefano .
ADVANCES IN PHYSICS, 2006, 55 (3-4) :349-476
[2]   Brittle-ductile transition and associated seismicity:: Experimental and numerical studies and relationship with the b value -: art. no. 2044 [J].
Amitrano, D .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2003, 108 (B1)
[3]   Variability in the power-law distributions of rupture events [J].
Amitrano, D. .
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2012, 205 (01) :199-215
[4]   Tuned Critical Avalanche Scaling in Bulk Metallic Glasses [J].
Antonaglia, James ;
Xie, Xie ;
Schwarz, Gregory ;
Wraith, Matthew ;
Qiao, Junwei ;
Zhang, Yong ;
Liaw, Peter K. ;
Uhl, Jonathan T. ;
Dahmen, Karin A. .
SCIENTIFIC REPORTS, 2014, 4
[5]   Seismic cycles, size of the largest events, and the avalanche size distribution in a model of seismicity [J].
Aragon, L. E. ;
Jagla, E. A. ;
Rosso, A. .
PHYSICAL REVIEW E, 2012, 85 (04)
[6]   Universal avalanche statistics and triggering close to failure in a mean-field model of rheological fracture [J].
Baro, Jordi ;
Davidsen, Jorn .
PHYSICAL REVIEW E, 2018, 97 (03)
[7]   Fracking and labquakes [J].
Baro, Jordi ;
Planes, Antoni ;
Salje, Ekhard K. H. ;
Vives, Eduard .
PHILOSOPHICAL MAGAZINE, 2016, 96 (35) :3686-3696
[8]   Statistical Similarity between the Compression of a Porous Material and Earthquakes [J].
Baro, Jordi ;
Corral, Alvaro ;
Illa, Xavier ;
Planes, Antoni ;
Salje, Ekhard K. H. ;
Schranz, Wilfried ;
Soto-Parra, Daniel E. ;
Vives, Eduard .
PHYSICAL REVIEW LETTERS, 2013, 110 (08)
[9]   Analysis of power-law exponents by maximum-likelihood maps [J].
Baro, Jordi ;
Vives, Eduard .
PHYSICAL REVIEW E, 2012, 85 (06)
[10]   Compaction localization in porous sandstones: spatial evolution of damage and acoustic emission activity [J].
Baud, P ;
Klein, E ;
Wong, TF .
JOURNAL OF STRUCTURAL GEOLOGY, 2004, 26 (04) :603-624