Discrete-Velocity Vector-BGK Models Based Numerical Methods for the Incompressible Navier-Stokes Equations

被引:9
作者
Zhao, Jin [1 ]
机构
[1] Beijing Computat Sci Res Ctr, Div Appl & Computat Math, Beijing 100193, Peoples R China
基金
中国国家自然科学基金;
关键词
Vector-BGK models; incompressible Navier-Stokes equations; Maxwell iteration; weighted L-2-stability; LATTICE BOLTZMANN METHOD; KINETIC SCHEMES; APPROXIMATION; CONVERGENCE; STABILITY;
D O I
10.4208/cicp.OA-2019-0192
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we propose a class of numerical methods based on discretevelocity vector-BGK models for the incompressible Navier-Stokes equations. By analyzing a splitting method with Maxwell iteration, we show that the usual lattice Boltzmann discretization of the vector-BGK models provides a good numerical scheme. Moreover, we establish the stability of the numerical scheme. The stability and secondorder accuracy of the scheme are validated through numerical simulations of the twodimensional Taylor-Green vortex flows. Further numerical tests are conducted to exhibit some potential advantages of the vector-BGK models, which can be regarded as competitive alternatives of the scalar-BGK models.
引用
收藏
页码:420 / 444
页数:25
相关论文
共 31 条
  • [1] Discrete kinetic schemes for multidimensional systems of conservation laws
    Aregba-Driollet, D
    Natalini, R
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 37 (06) : 1973 - 2004
  • [2] A stability notion for lattice boltzmann equations
    Banda, MK
    Yong, WA
    Klar, A
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2006, 27 (06) : 2098 - 2111
  • [3] A MODEL FOR COLLISION PROCESSES IN GASES .1. SMALL AMPLITUDE PROCESSES IN CHARGED AND NEUTRAL ONE-COMPONENT SYSTEMS
    BHATNAGAR, PL
    GROSS, EP
    KROOK, M
    [J]. PHYSICAL REVIEW, 1954, 94 (03): : 511 - 525
  • [4] CONVERGENCE OF A VECTOR-BGK APPROXIMATION FOR THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS
    Bianchini, Roberta
    Natalini, Roberto
    [J]. KINETIC AND RELATED MODELS, 2019, 12 (01) : 133 - 158
  • [5] Bouchut F., 2018, SMAI J. Comput. Math., V4, P1, DOI [/10.5802/smai-jcm.28, DOI 10.5802/SMAI-JCM.28]
  • [6] Discontinuous Galerkin methods for first-order hyperbolic problems
    Brezzi, F
    Marini, LD
    Suli, E
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2004, 14 (12) : 1893 - 1903
  • [7] A discrete kinetic approximation for the incompressible Navier-Stokes equations
    Carfora, Maria Francesca
    Natalini, Roberto
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2008, 42 (01): : 93 - 112
  • [8] Thirteen-velocity three-dimensional lattice Boltzmann model
    D'Humières, D.
    Bouzidi, M.
    Lallemand, P.
    [J]. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2001, 63 (6 II): : 1 - 066702
  • [9] Dellar PJ, 2002, J COMPUT PHYS, V179, P95, DOI [10.1006/jcph.2002.7044, 10.1006/jcph]
  • [10] Numerical methods for kinetic equations
    Dimarco, G.
    Pareschi, L.
    [J]. ACTA NUMERICA, 2014, 23 : 369 - 520