Correlating AGP on a quantum computer

被引:39
作者
Khamoshi, Armin [1 ]
Evangelista, Francesco A. [2 ,3 ]
Scuseria, Gustavo E. [1 ,4 ]
机构
[1] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA
[2] Emory Univ, Dept Chem, Atlanta, GA 30322 USA
[3] Emory Univ, Cherry Emerson Ctr Sci Computat, Atlanta, GA 30322 USA
[4] Rice Univ, Dept Chem, Houston, TX 77005 USA
关键词
variational quantum eigensolver; antisymmetrized geminal power; strongly correlated electrons; number projection; quantum computation; pairing Hamiltonian; ALGORITHM; SIMULATIONS;
D O I
10.1088/2058-9565/abc1bb
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For variational algorithms on the near term quantum computing hardware, it is highly desirable to use very accurate ansatze with low implementation cost. Recent studies have shown that the antisymmetrized geminal power (AGP) wavefunction can be an excellent starting point for ansatze describing systems with strong pairing correlations, as those occurring in superconductors. In this work, we show how AGP can be efficiently implemented on a quantum computer with circuit depth, number of CNOTs, and number of measurements being linear in system size. Using AGP as the initial reference, we propose and implement a unitary correlator on AGP and benchmark it on the ground state of the pairing Hamiltonian. The results show highly accurate ground state energies in all correlation regimes of this model Hamiltonian.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Artificial intelligence and a universal quantum computer
    Wichert, Andreas
    [J]. AI COMMUNICATIONS, 2016, 29 (04) : 537 - 543
  • [22] Progress of quantum entanglement in a trapped-ion based quantum computer
    Yum, Dahyun
    Choi, Taeyoung
    [J]. CURRENT APPLIED PHYSICS, 2022, 41 : 163 - 177
  • [23] NMRCloudQ: a quantum cloud experience on a nuclear magnetic resonance quantum computer
    Xin, Tao
    Huang, Shilin
    Lu, Sirui
    Li, Keren
    Luo, Zhihuang
    Yin, Zhangqi
    Li, Jun
    Lu, Dawei
    Long, Guilu
    Zeng, Bei
    [J]. SCIENCE BULLETIN, 2018, 63 (01) : 17 - 23
  • [24] Quantum Orbital Minimization Method for Excited States Calculation on a Quantum Computer
    Bierman, Joel
    Li, Yingzhou
    Lu, Jianfeng
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2022, 18 (08) : 4674 - 4689
  • [25] Demonstration of a Bayesian quantum game on an ion-trap quantum computer
    Solmeyer, Neal
    Linke, Norbert M.
    Figgatt, Caroline
    Landsman, Kevin A.
    Balu, Radhakrishnan
    Siopsis, George
    Monroe, C.
    [J]. QUANTUM SCIENCE AND TECHNOLOGY, 2018, 3 (04):
  • [26] Building an adiabatic quantum computer simulation in the classroom
    Rodriguez-Laguna, Javier
    Santalla, Silvia N.
    [J]. AMERICAN JOURNAL OF PHYSICS, 2018, 86 (05) : 360 - 367
  • [27] Universal quantum computer: Theory, organization and implementation
    Wu N.
    Song F.-M.
    Li X.-D.
    [J]. Jisuanji Xuebao/Chinese Journal of Computers, 2016, 39 (12): : 2429 - 2445
  • [28] On non-adiabatic holonomic quantum computer
    Margolin, AE
    Strazhev, VI
    Tregubovich, AY
    [J]. PHYSICS LETTERS A, 2003, 312 (5-6) : 296 - 300
  • [29] Filtering states with total spin on a quantum computer
    Siwach, Pooja
    Lacroix, Denis
    [J]. PHYSICAL REVIEW A, 2021, 104 (06)
  • [30] Quantum Computer Development with Single Ion Implantation
    A. Persaud
    S. J. Park
    J. A. Liddle
    I. W. Rangelow
    J. Bokor
    R. Keller
    F. I. Allen
    D. H. Schneider
    T. Schenkel
    [J]. Quantum Information Processing, 2004, 3 : 233 - 245